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Recap and Outlook

Recap: Sparse Approximation (Linear, Convex)

4@7 %:% > :-
ia

Sparse approximation: structured signals, linear measurements

y = Ax,, x,sparse, A € R"™*" random

with convex optimization
%, = argmin _[ly — Az|3 + Al
xcR?

and provable (high probability) guarantees

_ measurements
T, = x, when measurements 2 sparsity x log | ——

sparsity
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Dictionary Learning: structured signals, bilinear measurements

Y =A,X, e R"P X, sparse and random, A}A,~1T
with (efficient) nonconvex optimization

a, = argmin||Y " al;
lalla=1

and provable (high probability) guarantees

a, ~ (A,); when observations > poly(expected sparsity)
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Today: Deep Learning (Very Nonlinear, Extra Nonconvex)
Supervised Deep Learning: Given labeled data

N
T ) Yi
~~
data (images, text, ...) labels (classes, values, ...) i=1

fit a mapping f parameters X data — labels

using stochastic gradient descent on a task-appropriate loss

N
1
0, = SGDs (5 > Il fo(w:) — yﬂ\%)
=1

~
regression
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Today's Lectures
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Image Classification on ImageNet

100 =

Meta Pseudo Labels (EfciegiNer-12)

% g a0z e

NASNET-AR S T
5w Incepton .
g vog1g
gn
=z e
8w
sEpeTe
50 ¢
w0
22 2014 2006 20 2020 222

Big question: What role does low-dimensional structure play in
the practice of deep learning?
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N s o
Outlook for Today's Lectures

[ Answer: A huge role! ]

Today:

® Nonlinear low-dimensional structures in practical data necessitate the
use of deep networks over classical models;
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Outlook for Today's Lectures

[ Answer: A huge role! ]

Today:
® Nonlinear low-dimensional structures in practical data necessitate the
use of deep networks over classical models;
® A mathematical model problem helps understand resource
tradeoffs between data geometry and network architecture
(a nonlinear generalization of the sparse approximation analysis!);
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Outlook for Today's Lectures

[ Answer: A huge role! ]

Today:
® Nonlinear low-dimensional structures in practical data necessitate the

use of deep networks over classical models;

® A mathematical model problem helps understand resource
tradeoffs between data geometry and network architecture
(a nonlinear generalization of the sparse approximation analysis!);

® For classification problems, understand the features learned by deep
neural networks, and improve training robustness using insights from
low-dimensional structure;
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[
Outlook for Today's Lectures

[ Answer: A huge role! ]

Today:
® Nonlinear low-dimensional structures in practical data necessitate the
use of deep networks over classical models;
® A mathematical model problem helps understand resource

tradeoffs between data geometry and network architecture
(a nonlinear generalization of the sparse approximation analysis!);

® For classification problems, understand the features learned by deep
neural networks, and improve training robustness using insights from
low-dimensional structure;

® Whitebox design of deep networks for pursuing nonlinear low-dim
structures. (Lecture 5)
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Outline

@ Motivating Examples for Low-Dim Structure in Deep Learning



Motivating Examples for Low-Dim Structure in Deep Learning

Low-Dimensional Structure in Deep Learning Problems

Questions:

e

What is an appropriate mathematical model for data with
low-dimensional structure in deep learning applications?

What insights into practical deep learning can we get by studying
low-dimensional structure?
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Vignette |: Large-Scale Image Classification

Task: Learn a deep network mapplng images — object classes from data.

— {hedgehog,
hairbrush}

Massive driver of innovation in the last 10 years (ImageNet, ResNet, ...)

a Pseudo Labels (EficieptNet-12)

o0 FixRe: N Xt-101 32x48dw”
INASNET-/ Ns]””“’
5w InceptiopV3—e— " ©
g vag1s,
g
¢
= Nexer
$ e
sircf
s0 ¢

2012 2014 206 2018 2020 2022

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 8/85



Motivating Examples for Low-Dim Structure in Deep Learning

Nonlinear Variabilities in Natural Images
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® 6D for 3D rigid pose; 8D for perspective; 9D for certain illumination

Sam Buchanan & Zhihui Zhu

Low-Dim Structures via Deep Networks

May 26, 2022 9/85



Limitations of a Purely Data-Driven Approach?

Can fail to learn even simple invariances in the data:
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From [Azulay and Weiss, 2019]
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Motivating Examples for Low-Dim Structure in Deep Learning

Vignette |I: Deep Learning in Scientific Discovery
Gravitational Wave Astronomy

One binary black hole merger:

Frequency (Hz)

030 035
Time (s)

Many mergers o
(varying mass My, Mo): :
= low-dim manifold . ’://
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Gravitational Wave Astronomy as Parametric Detection

[— H1 observed
T

T

T

Is observation & = sy + z or = 27

= two (noisy) manifolds!

s Optimal

MF
Po

=] & = E DA
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Gravitational Wave Astronomy as Parametric Detection

[— H1 observed
T

T

T

Is observation & = sy + z or = 27

= two (noisy) manifolds!

Classical approach: template matching max(a~,x) > 77

=] & = E DA
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Motivating Examples for Low-Dim Structure in Deep Learning

Gravitational Wave Astronomy as Parametric Detection

[— H1 observed ]
T

T T T

Is observation & = s, + z or & = 27
= two (noisy) manifolds!

Classical approach: template matching max(a~,x) > 77
Issues: Optimality? Complexity?
Unknown unknowns? Unknown noise?

Gaussian, convex Sub-Gaussian, nonconvex Laplace, nonconvex
T~
" T~
ey — N S S S
- /\
—— A
L \/
] \/

Ideally: Combine low-dim structure of I" with data-driven for statistical structure...

=] F = = DA
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Motivating Examples for Low-Dim Structure in Deep Learning

Vignette Ill: Learning Features with Deep Learning for
Downstream Tasks

Ubiquitous deep learning workflow (science/engineering/industry):

@ Data-driven pretraining to learn good features (ImageNet pretraining;
masked prediction)

@® Fine-tuning on specific downstream tasks for performance (tracking;
segmentation; object detection; ...)

First-layer filters from AlexNet Inception v4 activations Neural collapse visualization

Issues: What features are learned? Robustness to imperfect labeling? How to
incorporate prior knowledge about data/task?
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Motivating Examples for Low-Dim Structure in Deep Learning

Takeaways from the Examples

Two key takeaways:
® Data with nonlinear, geometric structure pervade successful
practical applications of deep learning
® Important practical issues (robustness/invariance; resource
efficiency; performance) naturally linked to low-dim structure
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Motivating Examples for Low-Dim Structure in Deep Learning

Takeaways from the Examples

Two key takeaways:

® Data with nonlinear, geometric structure pervade successful
practical applications of deep learning

® Important practical issues (robustness/invariance; resource
efficiency; performance) naturally linked to low-dim structure

Next: Understanding mathematically when and why deep learning
successfully classifies data with nonlinear geometric structure.

Hedgehogs

IC4
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Outline

@® Resource Tradeoffs in the Multiple Manifold Problem
Problem Formulation
Intrinsic Geometric Properties of Manifold Data
Network Architecture Resources and Training Procedure
Training Deep Networks with Gradient Descent
Resource Tradeoffs



Resource Tradeoffs in the Multiple Manifold Problem Problem Formulation

A Mathematical Model Problem for Deep Learning +
Low-Dimensional Structure

Formalizing data with nonlinear geometric structure:
Low-dimensional Riemannian submanifolds of high-dimensional space!

Hedgehogs

The multiple manifold problem: K-way classification of data on
d-dimensional Riemannian manifolds in S™0~1.
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Problem Formulation
The Two Manifold Problem

S’flo—l

Problem. Given N i.i.d. labeled samples (x1,y(z1)), .
(xn,y(xN)) from M = M UM_, use gradient descent to train a
deep network fg that perfectly labels the manifolds:

sign (fo(x)) = y(x) forall x e M.
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Rl
The Two Manifold Problem: Key Aspects

Problem. Given N iid. labeled sam-
ples (z1,y(x1)), - - -, (N, y(zN)) from
M = My UM_, use gradient descent to
train a deep network fg that perfectly labels
the manifolds:

sign (fo(z)) = y(z) Vx € M.

® Binary classification with a deep neural network
® High-dimensional data with (unknown!) low-dimensional structure

® Statistical structure, and asking for “strong” generalization

[ We will focus on the case of one-dimensional manifolds (curves)
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Resource Tradeoffs in the Multiple Manifold Problem Problem Formulation

What Can We Hope to Understand Here?

Our “barometer”: compressed sensing.

g ZE > -

.1
y=Az,;  x, =agmin S|y — Az + Az
Q:ER" 2

. measurements
T, = &, when measurements 2 sparsity X log | ——

sparsity

Questions:
What are our ‘measurement resources’ in the two manifold problem?
What are intrinsic structural properties of nonlinear manifold data?

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 18 /85



[RCEITE NETe STy A S Y T TS R EVT I M RIS M Intrinsic Geometric Properties of Manifold Data

The Two Manifold Problem: Geometric Parameters

Problem. Given N i.id. labeled sam-
ples (z1,y(®1)), - .., (zn, y(zN)) from
M = My U M_, use gradient descent to
train a deep network fg that perfectly labels
the manifolds:

sign (fo(2)) = y(@) V@ € M.

A set of ‘sufficient’ intrinsic problem difficulty parameters:

e Curvature k;
® Separation A;
® Separation ‘frequency’ x.
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[RCEITE NETe STy A S Y T TS R EVT I M RIS M Intrinsic Geometric Properties of Manifold Data

Intrinsic Structural Properties |: Separation

Intuitively: How close are the class manifolds?

Mathematically:

A = inf {dextrinsic (fB, ZC/)}

x,x' €
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Intrinsic Geometric Properties of Manifold Data
Intrinsic Structural Properties Il: Curvature

Intuitively: Local deviation from flatness of the manifold.

11
<3

i
>

Mathematically:
K = sup €
zeM H( (B~ ||2>
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[RCEITE NETe STy A S Y T TS R EVT I M RIS M Intrinsic Geometric Properties of Manifold Data

Intrinsic Structural Properties IlI: &B-Number

Intuitively: How much do the class manifolds loop back on themselves?

Mathematically:

BM) = sup Ny ({x/

reM

dmtnnsm( ) > T 1
)
(/extrmsm( ) < T2 vV 1+ Ku2
Here, Na((T,0) is the covering number of T'C M by ¢ balls in dintrinsic-
S ———



[RCEITE NETe STy A S Y T TS R EVT I M RIS M Intrinsic Geometric Properties of Manifold Data

The Two Manifold Problem: Geometric Parameters

Problem. Given N i.id. labeled sam-
ples (z1,y(®1)), - .., (zn, y(zN)) from
M = My U M_, use gradient descent to
train a deep network fg that perfectly labels
the manifolds:

sign (fo(2)) = y(@) V@ € M.

A set of ‘sufficient’ intrinsic problem difficulty parameters:

e Curvature k;
® Separation A;
® Separation ‘frequency’ x.
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Resource Tradeoffs in the Multiple Manifold Problem Network Architecture Resources and Training Procedure

Network Architecture and Training Procedure

Output fo(x)

® Fully connected with RelLUs
® Gaussian initialization 6

® Trained with N i.i.d. samples
from measure p of density p
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Resource Tradeoffs in the Multiple Manifold Problem Network Architecture Resources and Training Procedure

Network Architecture and Training Procedure

Output fo(x)

® Fully connected with RelLUs
® Gaussian initialization 6 Dep

® Trained with IV i.i.d. samples
from measure p of density p

1

Input = € S"~

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 24 /85



Resource Tradeoffs in the Multiple Manifold Problem Network Architecture Resources and Training Procedure

Resource Tradeoffs: From Linear to Nonlinear
The “linear” case (compressed sensing):

£ bal B,
4 é % %

.1
y=Az,; @ —agmin £ |y — Azl + Az
TERM 2

measurements>

x, = &, when measurements 2 sparsity X log ( :
sparsity

Our current nonlinear setting:

Output fp(z)

Depth L N

Sm.fl

N i.i.d. data samples

Data structure )
Architectural resources
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Network Architecture Resources and Training Procedure
The Two Manifold Problem: Resource Tradeoffs

Output fo(x)

Dep

Width n

N i.i.d. data samples

Theory question: How should we set resources (depth L, width 1,
samples IV) relative to data structure (separation A, &; curvature
k; density p) so that gradient descent succeeds?
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U AT N
Gradient Descent Training

Objective: Square Loss on Training Data

1

min ()= 5 [ (fo(a) ~y(@)? dux(a).

Does gradient descent correctly label the manifolds?
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Gradient Descent Training

Objective: Square Loss on Training Data

min ()= 5 [ (fo(a) ~y(@)? dux(a).

Does gradient descent correctly label the manifolds?
One Approach: Geometry (from symmetry!) in parameter space:

2 O

Dictionary Sparse Blind Matrix
Learning Deconvolution Recovery

See [Gilboa, B., Wright '18], survey [Zhang, Qu, Wright 20] (Lecture 3!)

Sam Buchanan & Zhihui Zhu
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Gradient Descent Training

Objective: Square Loss on Training Data

min o(6) = - /M (fol@) — y(@))? dun ().

Does gradient descent correctly label the manifolds?
Today’s talk: Dynamics in input-output space:

Neural Tangent Kernel

6w, ') = (255, 2la))

Measures ease of independently adjusting fo(x), fo(z’)
Follows [Jacot et. al. 18], many recent works.
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

Objective: Square Loss on Training Data

wine(®) =3 [ (fol@) ~ (@) dux(a).

Signed error: ((xz) = fo(x) — y(x).

Gradient flow: 8, = —V¢(6,) = — M %lezet(m)g(m)dm\r(m).
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Dynamics of Gradient Descent
The error evolves according to the NTK:
Glz) =

00 lo=6, t

=] & = E DA
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

The error evolves according to the NTK:

Ct(a:) - afgéw) Zzetét
6f9(113) * af@(x/) / /
T 00 lo—s, ™ “00 e:eft(“’ )dun (x')
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

The error evolves according to the NTK:

. 0 * .
Ct(a:) - fgéw) Ozetet
. 8f9(:13) * af@(x/) / /

0=06;

= = L 6 a6 o, Yot
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

The error evolves according to the NTK:

. 0 * .
Ct(a:) - fgéw) Ozetet
. 8f9(:13) * af@(x/) / /

0=06;

= = L 6 a6 o, Yot
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

The error evolves according to the NTK:

ét(a?)

afg(cc) * 0

96 lo—o, '

8f9(:1}) ¥ afg(.’l:/) / /
98 loe, MT G:BtCt(x)d'uN(w)

_/ <5f9(e’ﬂ)‘ dfe(')
v\ 00 le=e, 00

_ / 0, (. ')y (a)dp (')
M
—04[G](@).

><t(w'>duN<w/>

0=06;
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Training Deep Networks with Gradient Descent
Dynamics of Gradient Descent (“NTK Regime”)

When width and number of data samples are large, we have (whp)
Sltlp 1©t — Ol 2,2 = 0uidin(1)

throughout training.

= LTI dynamics

G =—0[¢]

= Fast decay if (; is aligned with lead eigenvectors of ©!
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Training Deep Networks with Gradient Descent
Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of ® are intractable!

e

Definition. g : M — R is called a certificate if for all x € M

foo (@) — ol / O, #')g(a’) du(x')

square

and [, (g x'))? dp(ax') is small.
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Training Deep Networks with Gradient Descent
Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of © are intractable!

Definition. g : M — R is called a certificate if for all x € M

mean

foo(x) —y(x) ~

square

/ o, x')g(a’) du(x')
M

and [, (g(x'))? dp(a’) is small.
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Training Deep Networks with Gradient Descent
Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of © are intractable!

Definition. g : M — R is called a certificate if for all x € M

mean

foo(x) —y(x) ~

square

/ o, x')g(a’) du(x')
M

and [, (g(x'))? dp(a’) is small.

: 2
Function space L; .

Error ¢ near stable range
of .random operator ©
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of © are intractable!

Definition. g : M — R is called a certificate if for all x € M

foo () — u( / o, 2')g(x') dpu(ar')

square

and [, (g x'))? dp(a') is small.

Lemma. (informal) If a certificate g exists for M, then

LlogL
<
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Resource Tradeoffs
Roles of Width, Depth, and Data

G = —0O[¢]

Questions:
How do width, depth, and samples affect ®7?
How does ©® depend on the geometry of the data?

Depth L: fitting resource Width n: statistical resource

= 10 === 100 =400 = 1000 —— £, [0*¥] /n

%@(el,m’), L =125 0

Lz, )
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:
@ O decays with angle.

® Faster decay as depth
increases.

= Set depth based on
geometry!

£O(e1, '), L=5

[ Deeper networks fit more complicated geometries.
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:
@ O decays with angle.
® Faster decay as depth 0
increases.

— Set depth based on
geometry!

%@(el, x’'), L =25

[ Deeper networks fit more complicated geometries.
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:
@ O decays with angle.
® Faster decay as depth 0
increases.

— Set depth based on
geometry!

+o(er, '), L =125

[ Deeper networks fit more complicated geometries.
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:
@ O decays with angle.
® Faster decay as depth ’
increases.

— Set depth based on
geometry!

+o(er,a'), L =625

[ Deeper networks fit more complicated geometries.
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs I: Certificates from Depth

Numerical experiment:

Depth as a fitting resource: Larger depth L leads to a sharper kernel ©
and a smaller certificate g
— Easier fitting!
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs II: Width as a Statistical Resource
Output fp(x)

n
— 10 — 100 —400 — 1000 — &)

O(x,a')/n

Input « € S"o—!

As width increases, ©(x, z') concentrates about Eipit weights[© (€, )]

Sam Buchanan & Zhihui Zhu
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs IlI: Width as a Statistical Resource

Proposition. Suppose that n > Lpolylog(Lng). Then (whp)

n = of'v
‘@(m,az') —3 Zcos(goey) H ( - T) ‘

L 0=t

is small (simultaneously) for all (z,z') € M x M.

= set width n based on depth L
and implicitly based on k, A
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs Ill: Data as a Statistical Resource

Co (z)
) ()
<2N (w

My :vl :1:2 T1T2TITL4T5T6

Depth L = 50

= Sample complexity N is dictated by kernel “aperture”, which
depends on geometry (k,A) via L

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 38/85



Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

End-to-End Generalization Guarantee

Theorem [B., Wang, Gilboa, Wright 2021]: For sufficiently reg-
ular one-dimensional manifolds and ReLU networks, when

depth > geometry, width > poly(depth), data > poly(depth),

randomly-initialized small-stepping gradient descent perfectly classi-
fies the two manifolds!

Upshot:

® We understand the role each resource plays in solving the
classification problem.

® We understand how intrinsic geometric properties of the data drive
these resource requirements.
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Outline

© Looking Inside: Neural Collapse in the Multiple Manifold Problem
Learned low-dimensional features—NC phenomena
Geometric analysis for understanding neural collapse
Exploit NC for improving training efficiency
Exploit NC for understanding the effect of loss functions



Looking Inside: Neural Collapse in the Multiple Manifold Problem

Image Classification Problem |

So far, Sam has talked about resources needed to ensure correctly classify
two manifolds.

We will now focus on the general classification of K manifolds.

Instead of just on the output, we will focus more on the learned features
and classifiers.
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Image Classification Problem ||

Labels: k=1,..., K

® K =10 classes (MNIST, CIFAR10, etc)
e K = 1000 classes (ImageNet)

=
SR Ty
% Lm Cat Dog Truck

meo " 1] [0 0
m2’1 - y ° 7 | 0 LR
g r—— Yy .
4 Neural network .
o — s, ol 1o 1

One-hot labeling vectors in ]RK
Assume balanced dataset where each class has n training samples

e O

® |f not, we can use data augmentation to make them balanced

Sam Buchanan & Zhihui Zhu
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Looking Inside: Neural Collapse in the Multiple Manifold Problem

Deep Neural Network Classifiers |

A deep neural network classifier often contains two parts: a feature
mapping and a linear classifier

Input Feature/representation Output
(Our focus) §
. ff& g :
/\ ’ il;i N feature mapping e (a:)' linear classifier

Wh+b
{w,b}

(e.g., Vconvolﬁutiior‘\ I;;Iers)\
e Qutput: f(x;0) = Woe (x) + b with 0 = (6/, W b).
® Training problem:

ZZﬁcr: (W (k) + b,ye) +A (0, W, b)||%

G/WbKn
k=1 i=1

cross—entropy (CE) loss weight decay
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Looking Inside: Neural Collapse in the Multiple Manifold Problem

Deep Neural Network Classifiers |l

Input Feature/representation Output
ﬁ? (Our focus) §
.
Tye
/D \ feature mapping ¢9'( ) ' linear classifier
A h —_— Wh+b
\ {W,b}

1\ P
1//

— ) ~)
(e.g., convolutlon layers)

0.6 Cat 1| CE(Cat): = —¢(Cat) - log p(Cat)

Softm
Output: f(x;0) = flfnctigi 3| Dog |0 =—1-1og0.6
-1 0.1] Panda |0 — 0.51
Prediction Target
(probability)
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Neural Collapse in Classification |

Prevalence of neural collapse during the terminal

phase of deep learning training g%
Vardan Papyan, 2 X. Y. Han, and David L. Donoho °

) fe o

+ See all authors and affiliations A e @

PNAS October 6, 2020 117 (40) 24652-24663; first published September 21, 2020;
https://doi.org/10.1073/pnas.2015509117

Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and
Stéphane Mallat)

® Reveals common outcome of learned features and classifiers across a
variety of architectures and dataset

® Precise mathematical structure within the features and classifier
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena
Neural Collapse in Classification Il

Neural Collapse (NC) refers to

e NC1: Within-Class Variability Collapse: features of each class collapse
to class-mean with zero variability (low-dimensional features):

k-th class, i-th sample : hy; — hy,
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Learned low-dimensional features—NC phenomena
Neural Collapse in Classification IlI

Neural Collapse (NC) refers to

® NC2: Convergence to Simplex Equiangular Tight Frame (ETF): the
class means are linearly separable, have same length, and maximal
angle between each other

(i) 1, k=K
IRl [P | — =, kAK

e |If K vectors have equal angle between each other, then the largest

. . . . 1
possible cosine angle between each pair is — .
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena
Neural Collapse in Classification 1V

Neural Collapse (NC) refers to

® NC3: Convergence to Self-Duality: the last-layer classifiers are
perfectly matched with the class-means of features

wk Ek
ATIAT — —,
lwk[| - [lhl

where w” represents the k-th row of W.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Neural Collapse in Classification V

NC is preferred among every successful exercise in feature engineering
[Papyan et al.’20]

® Information Theory: Simplex ETF is the optimal Shannon code

® (lassification: Simple ETF features = Simplex ETF max-margin
classifier

Q: Why iterative training algorithm learns low-dimensional NC features
and classifiers?

A: We will use tools developed in nonconvex optimization in Lecture 3 to
understand NC phenomenon
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Simplification: Unconstrained Features |

Input Feature/representation Output
s (Our focus) f
i L@ | N . -
<\ ® :136‘ \\\ feature mapping ¢g ( ): linear classifier Whib
\ W, b}
| |
| 4 /7
14 2 \
(e.g., convolution layers)
Training problem is highly nonconvex [Li et al.'18]:
1 K n
. . / 2
Suin, ; ;ECE(WQSG'(%,Z) +b,yk) + (8, W, b)||7
=1 1=

® Neural Tangent Kernel focuses on output, and thus hardly provides
much insights about features

® Neural Collapse is about the classifier W' and the features ¢g (s ;)
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Simplification: Unconstrained Features Il

Input Feature/representation Output
(Our focus) §
{ » wm \\\ feature mapping ¢g: () linear classifier
A - : g ——————>Wh+b
\\‘ \) < {W’ b}
< |
\‘ // ~

(e.g., convolutlon Iayers)

® Neural Collapse is about the classifier W' and the features ¢g/ (s ;)
® To understand NC, we treat the features hy; = ¢gr (k) as free
optimization variables (unconstrained features model [Mixon et al.’21])

K
{hkm}H‘I/VbKnZZ&jE Why; +b,yr) + Ml({he}, W, b) |1
’ k=1 1i=1
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Simplification: Unconstrained Features Il

linear classifier
——

Wh+b
{W,b}

»CCE (Why.; + b, y) + M| ({hri}, W, b)| %

{h;“}WbKnk =

e Validity: Modern networks are highly over-parameterized, that can
approximate any point in the feature space
® Also called layer-peeled model and has been studied recently to
understand NC
® We will show such simplification preserves the core properties of
last-layer classifiers and features—the NC phenomenon
May 26, 2022  51/85



Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Simplification: Unconstrained Features IV

[Lu et al."20] study the following one-example-per class model

min — Z»CCE (hiyyn), stllhuglz =1
{he} KK

[E et al.’20, Fang et al.’21, Gral et al.'21, etc.] Study constrained formulation

K

ZZECE Whii yi), st [Wilp <1, Ryl < 1
k=1 1=1

1

These work show that any global solution has NC, but
® What about local minima/saddle points?

® The constrained formulations are not aligned with practice
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model |

/'

h

linear classifier

{w.b}

Wh+b

K

Zzﬁma Why; + b, yr) + Ml({he}, W, b) |1
k=1 1=1

1
{h;”}WbKn

® Closely related to the matrix factorization problem in Lecture 3:

bilinear form Why, ;

® We will study its global/local minima and saddle points
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model Il

{ht, }WbKn ZZﬁCE Wh,i + b, yk)+>‘|’({hk1} w b)”F
‘ k=1 i=1

Theorem (global optimality) [Zhu et al. 2021] Let feature dim.
d > #class K — 1. Then any global solution ({hj ;, W*,b*}) must
satisfy NC: b* = 0 and

T (hp, i) 1, k=kK  w"™  h

ki=Ngpy == T

\—;a—/ [Pl [P —, kAR WMl Ry
NC2 NC3

® d > K — 1 is required to make K class-mean features equal angle and

with cosine angle —ﬁ (the largest possible) between each pair.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model Il

ZZECE (Whios + byyi) + Al ({hiei}, W, B) |3

Kn
{h’“}Wb D=t

Theorem (benign global landscape) [Zhu et al. 2021] Let feature
dim. d > #class K. Then the above objective function (i) has no
spurious local minima, and (i) any non-global critical point is a strict
saddle with negative curvature. Conjecture: d > K — 1 is sufficient.

strict saddle

,’(has no NC)

negative curvature

v v
all local minima obey NC

v M
global minima “flat” saddle

General nonconvex problems Our training problem
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model 1V

K

" m}HéVbKnZZcCE Whyi+b,y1) + Al ({hei}, W, b)[[7 (NVX)
k,i k—1 i=1

Theorem (benign global landscape) [Zhu et al. 2021] Let feature
dim. d > #class K. Then the above objective function (i) has no
spurious local minima, and (i) any non-global critical point is a strict
saddle with negative curvature.

® Proof idea: let 2z, ; = Why,;. Then (NVX) is equivalent to the
following convex problem [Haeffele & Vidal'15, Li et al.'17, Ciliberto et al.'17]

K n
1 2
win - ;;ﬁcm(zk,i +b.ye) + A Z[L DI (CVX)
=1 1=
where || - ||« is the nuclear norm (sum of singular values).
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model V

Mx

i > Con(Whis-+ bown) + Al ({hei). W B (NWVX)
ki —

k=1

n

D L (zri + byr) + M| Z] + Allb]I3 (CVX)
11:=1

e Step 1: (NVX) and (CVX) have the "same” global solutions: if
(H*, W*,b*) is a global solution of (NVX), then (W*H*,b*) is a
global solution of (CVX); vice versa.

1
b Kn

Mx

e
Il

variational form || Z||, = Zm‘}‘gl (HWHF + | H|I%)
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model VI

K n
1
Log(Why,; +b, Ml({Rhyi}, W, b)||% (NVX
{hkr?}HIl/VbKn;; cE(Whii+b,y1) + Al ({he:} Nz ( )
Iglilm;;ECE (ki + by yk) + M| Z ||« + Allb]3 (CVX)

e Step 2: if (H,W,b) is a critical point but not a global min of (NVX)
® (Z,b) with Z = W H is not a critical point to (CVX)
® (Z,b) does not satisfy the first-order optimality condition of (CVX)
® Exploiting this, we show the Hessian at (H, W b) has a negative
eigenvalue, i.e., it is a strict saddle of (NVX)
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model VII

K n
{hkm}H!l}VbKnZZ ce(Whii +b,yi) + Al ({hri}, W, b) 17 (NVX)
i 1 im1
1 K n
min 30> Lon(zia +by) + A Z0L +ABIE(CVX)
k=1 1=1

e Step 1: (NVX) and (CVX) have the "same” global solutions.
e Step 2: if (H,W,b) is a critical point but not a global min of (NVX)

® the Hessian at (H, W b) has a negative eigenvalue, i.e., it is a strict
saddle

® Step 2 holds for any non-global critical point = (NVX) has benign
global landscape (no spurious local minima & strict saddle function)
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model VIII

{hkm}”évz,KnZZ‘CCE Whii +b,yg) + M|({hr}, W, b)||%
‘ k=1 i=1

Theorem (global optimality & benign global landscape) Let fea-
ture dim. d > #class K.

® Any global solution ({hj ;, W*,b*}) obeys Neural Collapse.

® The objective function (¢) has no spurious local minima, and
(73) any non-global critical point is a strict saddle with
negative curvature.

Message. lterative algorithms such as (stochastic) gradient
descent always learns Neural Collapse features and classifiers.

\.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Experiments on Practical Neural Networks

Conduct experiments with practical networks to verify our findings on

Unconstrained Features Model

Use a Residual Neural Network
(ResNet) on CIFAR-10 Dataset:

® K =10 classes
® 50K training images
® 10K testing images

—

3x3 cony, 64

Input
3x3 conv, 64

3 ]
H ¥
g §
# b

3x3 conv, 128

—

3x3 conv, 256, 12

3x3 conv, 256

airplane ‘_ﬂ.% V..=*.
automobile E !Enh‘
o Elmall WES ¥ EEE
cat EEeHSEEEs P
deer .H‘Hgﬁ-m.

© s BK R
o [ I R R O O R

nee A Y ) R ER S TR
N A [ P P
o R e 0 0 o O O R

3x3 cony, 512

8
e
3
3

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022

61/85



Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Experiments: NC is algorithm independent

ResNet18 on CIFAR-10 with different training algorithms

6 0.8 1.0
—¥— SGD —*— SGD —*— SGD
—e— Adam —e— Adam 0.8 —e— Adam
4 —=— LBFGS 06 —=— LBFGS —=— LBFGS
g go.e
2 0.4
E 0.2
9 : 0.0,
0 50 100 150 200 0 50 100 150 200 o 50 100 150 200
Epoch Epoch Epoch

Within-Class Variability (NC1) Between-Class Separation (NC2)  Self-Duality Collapse (NC3)

® The smaller the quantities, the severer NC

® NC across different training algorithms
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Experiments: NC Occurs on Random Labels/Inputs

CIFAR-10 with random labels, multi-layer perceptron (MLP) with varying
network widths

1.2 20
10 width = 8 —8— width=18 9 & —e— width=18
D s width = 16 10 width = 16 S 8O width =16 =
= . i rirn @@ . | x
© width = 32 0.8 = width=32 | 70 —=— width = 32
3 6 width=64 = 7 —+— width = 64 2601\ —+— width = 64
= width = 128 SO 0.6{0 #— width = 128 wi 50) #— width = 128
o ) >3 AR ol ) |
= width = 256 \ T4 width =256 g‘40 \ —4— width = 256
g 2 width=512 = 04 width =512 | -Z30{ | width = 512
Z o0 width = 1024 - 0.2 b = width =1024 | "5 20 A~ width = 1024
width = 2048 - . width = 2048 | {= 10 width = 2048
-2 ool A=A s T ] " Sl
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Epoch Epoch Epoch
Within-Class Variability (NC1) Self-Duality Collapse (NC2) Training Error

e Validity of unconstrained features model: Learn NC last-layer
features and classifiers for any inputs

® The network memorizes training data in a very special way: NC

® We observe similar results on random inputs (random pixels)
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Looking Inside: Neural Collapse in the Multiple Manifold Problem BNST{lTM N (@R TV ER d T T R TS 1
Exploit NC

Experiments in [Papyan, Han Donoho] shows NC leads to better
® Generalization performance

® Robustness

We can also exploit NC for
® Improving training efficiency & memory cost (covered later)
¢ Understanding the effect of loss functions (covered later)
® Understanding transferability
® etc.
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Exploit NC for improving training efficiency
Exploit NC for Improving Training & Memory |

NC is prevalent, and classifier always converges to a Simplex ETF

¢ Implication 1: No need to learn the
classifier [Hoffer et al. 2018]
® Just fix it as a Simplex ETF

® Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet!

¢ Implication 2: No need of large feature
dimension d

® Just use feature dim. d = #class K (e.g.,
d = 10 for CIFAR-10)

® Further saves 21% and 4.5% parameters for
ResNet18 and ResNet50!
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Exploit NC for Improving Training & Memory I
ResNet50 on CIFAR-10 with different settings

® Learned classifier (default) VS fixed classifier as a simplex ETF
® Feature dim d = 2048 (default) VS d = 10

12 100 100
[ learned classifier, d=2048 > > 90
1.01  —e— fixed classifier, d=2048 % 9
08 —#— learned classifier, d=10 5 80 g 80
|\ —w— fixed classifier, d=10 S g
g 60 ® 60
c learned classifier, d=2048 g‘ 50 learned classifier, d=2048
c —e— fixed classifier, d=2048 ] —e— fixed classifier, d=2048
© 40 —#— |earned classifier, d=10 g 40 —m— learned classifier, d=10
= —o— fixed classifier, d=10 P 30| —— fixed classifier, d=10
0.0 so 100 150 200 2% 50 100 150 200 2% 50 100 150 200
Epoch Epoch Epoch
Self-Duality Collapse (NC3) Training Accuracy Testing Accuracy

® Training with small dimensional features and fixed classifiers achieves
on-par performance with large dimensional features and learned
classifiers.
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Is Cross-entropy Loss Essential?

Is cross-entropy loss essential to neural collapse?

i One-hot
: linear label
;7, classifier Whib — ®

(o]

(o]

We can measure the mismatch between the network output and the
one-hot label in many ways.

Various losses and tricks (e.g., label smoothing, focal loss) have been
proposed to improve network training and performance?

"He et al., Bag of tricks for image classification with convolutional neural networks,
CVPR'19.
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Focal Loss (FL)

Focal loss puts more focus on hard, misclassified examples?

5
CE(p:) = — log(p:) = g 5
—=0.
A FL(p) = —(1 — p)" log(pr) y=1
\\\ —=2
3 =5
()]
(7]
o
2
well-classified
examples
1 rlarge —A— ~
0 1

0 0.2 0.4 0.6 0.8 small 1
probability of ground truth class gradient

2Lin et al., Focal Loss for Dense Object Detection, CVPR'18.
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(YT T - [T SR N ST @ | EVECRT R SRV T SRV ET T [N RIS M Exploit NC for understanding the effect of loss functions
Label Smoothing (LS)

Label smoothing replaces the hard label by a soft label 3

. i
y % = feature mapping : linear Solft label
x \ Por (a:) * lassifier -
S T | : h classi Wh+b a/2
\ a2
|
j// CE:a=0

Cat |[l—a

0.6 Cat) - log p(Cat)
Output: Wh +b = 0 Softmax | 3| Dog | a/2

—q
—q

(
: Dog) - log p(Do
_ 1 | function” | 5 4 Panda| /2 (Dog) - log p(Dog)
— ¢(Panda) - log p(Panda)
Prediction ~ Target — (1 —a)log(0.6)
- %log(O.S)
- %log([).l)

3Szegedy et al., Rethinking the inception architecture for computer vision, CVPR'16.
Muller, Kornblith, Hinton, When does label smoothing help?, NeurlPS'19.
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(YT T - [T SR N ST @ | EVECRT R SRV T SRV ET T [N RIS M Exploit NC for understanding the effect of loss functions
Mean-squared Error (MSE) Loss?

- . i One-hot
/hﬁ'ﬁﬁ\\\ feature mapping : linear label
4 ' N N lassifi [ ]
\\ T \\ h classiner Wh + b _
°
vV N o
1 Cat 1
Output: Wh+b= | 0 | Dog |0 MSE: = (1 —1)24 (0 — 0)? + (-1 —0)?
—1| Panda [0
Prediction Target

Compared with CE, (rescaled) MSE loss produces on par/slightly worse

results for computer vision tasks and on par/slightly better results for NLP
tasks.*

*Hui & Belkin, Evaluation of neural architectures trained with square loss vs cross-entropy in
classification tasks, ICLR 2021.
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Are All Loses Created Equal?—A NC Perspective |

Do all these losses make difference?

We study them under the unconstrained feature model:

K

{ha, }WbKnZZL (Whii + b,yi) + Al ({hiei}, W, b) |5
' k=1 1i=1

Theorem (informal) [Zhou et al.'’22] With feature dim. d >
#class K, all the one-hot labeling based losses (e.g., CE, FL, LS

MSE) lead to (almost) the same NC features and classifiers [Han et
al'21, Tirer & Bruner'22, Zhou'22].
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Exploit NC for understanding the effect of loss functions
Are All Loses Created Equal?—A NC Perspective |l

Theorem (informal) [Zhou et al.'’22] With feature dim. d >
#class K, all the one-hot labeling based losses (e.g., CE, FL, LS,
MSE) lead to (almost) the same NC features and classifiers [Han et
al'21, Tirer & Bruner'22, Zhou'22].

Implication If network is large enough and trained longer enough

® All losses lead to largely identical features on training
data—NC phenomena

® All losses lead to largely identical performance on test data
(experiments in the following slides)
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Exploit NC for understanding the effect of loss functions
Are All Loses Created Equal?—A NC Perspective Il

ResNet50 on CIFAR-10 with different training losses

2.0 1.2 1.2
—%— CE —»— CE —%— CE
) - S 1.0 —-— IS 1.0 —&— LS
& —#— FL —w— FL —u— FL
0.8 0.8
. o~ MSE o~ MSE o~ MSE
% 1.0 0.6 % 0.6
0.4
05 o.4~
0.2 0.2
0.0 0.0 0.0
0 200 400 600 800 0 200 400 600 800 ] 200 400 600 800
Epoch Epoch Epoch

Within-Class Variability (NC1)

Between-Class Separation (NC2)

® The smaller the quantities, the severer NC

® NC across different training losses
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Exploit NC for understanding the effect of loss functions
Are All Loses Created Equal?—A NC Perspective IV

ResNet50 on CIFAR-10 with different training losses

e 100 100
g S
C 80 > 0 o 9
3 © =1
|9} — o
|9) = )
® 60 S 8o o 80
2 —— CE © —— CE = —— CE
c —=— IS © —-— LS =] —-— S
s 40 R = 10 —— FL @70 —— FL
= o MSE o MSE o MSE

0 200 400 600 800 % 200 400 600 800 %% 200 400 600 800
Epoch Epoch Epoch
Train accuracy Validation accuracy Testing accuracy

® All losses lead to largely identical performance on training, validation,
and test data
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Looking Inside: Neural Collapse in the Multiple Manifold Problem

Are All Loses Created Equal?—A NC Perspective V

ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

test ACCpse

test AcCce

800 kR f:{o]0} 94.483 94.807

f:1a10] 04.477 94.860

F:1%4] 03.913 94.400 94.670

PT) 04.160 |94.887 PP TNe] 93.763 94.410 94.570 400 EERYERTYE] YT 04.290 94.780

PrpYes) 03.733 94.403 94.690

pIols) 92.963 93.887 94.040 94.233

PYNS) 93,567 94.297 [94.880 1851047 TP 03.163 93.833 94.167 |94:537

93.707 94.337 pele] 92.090 92.630 93.240 93.293 91.480 92.250 92.827 93.093 93.683 94.360

0.25 0.5 1 2
Width

0.25 0.5 1
Width

0.25 0.5 1
Width

0.25 0.5 1
Width

Cross-entropy Mean-squared Error Focal loss Label smoothing

® |f network is large enough and trained longer enough, all losses lead
to largely identical performance on test data

u}
)
I
il
it
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Recap and Outlook

@ Motivating Examples for Low-Dim Structure in Deep Learning

@® Resource Tradeoffs in the Multiple Manifold Problem
Problem Formulation
Intrinsic Geometric Properties of Manifold Data
Network Architecture Resources and Training Procedure
Training Deep Networks with Gradient Descent
Resource Tradeoffs

© Looking Inside: Neural Collapse in the Multiple Manifold Problem
Learned low-dimensional features—NC phenomena
Geometric analysis for understanding neural collapse
Exploit NC for improving training efficiency
Exploit NC for understanding the effect of loss functions

O Exploit Sparse Model for Robust training
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NC — Overfitting to Corruptions!

Label noise is common and often unavoidable

® Some proportion of the labels Inputs t&‘
|

are incorrect (5-80%7) Training . ! s
. ca ship ir
® \We don't know which labels are 'T‘"be's
. rue
correct/incorrect labels dog plane bird
10 40% label noise, CIFAR10, CE

NC always happens
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Prior Work on Robust Deep Learning for Noisy Labels

Various (heuristic or principled) methods have been proposed®

Noise Adaptation Layer
Robust Architecture (SIII-A) Dedicated Architecture
Explicit Regularization
Robust Regularization (SI11-B) Implicit Regularization
Robust Loss Function (§111-C) Loss Correction
Robust Loss Design Loss Reweighting

Loss Adjustment (SI11-D)

. . Label Refurbishment
Multi-network Learning
Sample Selection (S§111-E) Meta Learnin

Multi-round Learning

Hybrid Approach

5Song et al., Learning from noisy labels with deep neural networks: A survey, IEEE TNNLS,
2022.
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Exploit Sparse Model for Robust training

A Sparse Over-Parameterization (SOP) Method

We model the label noise and (hopefully) correct it. Only a fraction of the
labels are corrupted (sparse), and the corruption in each label is also sparse

Yy f(x:0) s
cat”[ () 1] — 17
1 0 1

. = . + o
Corrupted True -Sparse-
label label noise

Lecture 1 introduced principled methods for dealing with sparse corruption
in compressive sensing, robust PCA®

5Candes & Tao, Decoding by linear programming, TIT 2005.
Wright et al., Robust face recognition via sparse representation, TPAMI, 2008.
Candes et al., Robust principal component analysis? JACM, 2011.
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A Sparse Over-Parameterization (SOP) Method

Our approach:” minimize the distance between y and f(8;x) + s

1
min —Z L’CE(f(a:i;G)—i- U; O Uy —v; O ,Yi)

~~

over-parameterize s;to promote sparsity

Here the over-parameterization u; ® u; — v; ® v; introduces implicit
algorithmic regularization [Vaskevicius et al.'19, Zhao et al.’19]

- : 1 2 2
variational form ||s||; = g in §(||u|| + |lv]|*)

7Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22:
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A Sparse Over-Parameterization (SOP) Method

Our approach:” minimize the distance between y and f(0;x) + s

. 1
min — E Lcg (f(a:z, 9) + u; ©Ou; —v; ©®v; ,yi)
Ou;v; N “

i=1 over-parameterize s;to promote sparsity

Here the over-parameterization u; ® u; — v; ® v; introduces implicit
algorithmic regularization [Vaskevicius et al.'19, Zhao et al.'19]

- B : 1 2 2
variational form ||s||; = g lin §(H’U,H + ||lv|I?)

Why not use explicit regularization?

or?i?} ZECE (x::©) + si, yi) + Allsillx

=0 —0

7Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22:
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A Sparse Over-Parameterization (SOP) Method

A simple model: assume f(x;@) is a scalar function and can be
approximated by first-order Taylor expansion

f(x;0) = f(x;600) + (Vf(z;60),0 — )
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A Sparse Over-Parameterization (SOP) Method

A simple model: assume f(x;@) is a scalar function and can be
approximated by first-order Taylor expansion

f(x:0) = f(x;00) + (Vf(x;60),0 — 60)
WLOG, assume f(x;60¢) + (V f(x;00),00) = 0. For N training samples,

f(x1;0) Vf(w1;60)"
: : 0=J-0

Q

fan:0)] | Vi@y:00)T
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A Sparse Over-Parameterization (SOP) Method

A simple model: assume f(x;@) is a scalar function and can be
approximated by first-order Taylor expansion

f(x:0) = f(x;00) + (Vf(x;60),0 — 60)
WLOG, assume f(x;00) + (V f(x;60),00) = 0. For N training samples,

f(x1:0) Vf(z1;60)"
: : 0=J-6

Q

fan:0)]  [Viten:60)T
This leads to the following corrupted observation problem
y=4J 0, +s,
where 8, is the underlying groundtruth parameter, and s, is sparse.
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A Sparse Over-Parameterization (SOP) Method

We over-parameterize the sparse noise by u ® u — v ® v and solve

1
ming(e,u,v):§|]J-9—I—u®u—v®v—yH§

0,u,v

using gradient descent with discrepant learning rates
0111 = 0: — uVeg(0r, ut, vy)

- )

Vi1 vt Vg0, us, vy)
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Exploit Sparse Model for Robust training

A Sparse Over-Parameterization (SOP) Method

We over-parameterize the sparse noise by u ® u — v ® v and solve

1
min g(8,u,v) = -|J -0+ ucCu—-vov—y|3
0,u,v 2

using gradient descent with discrepant learning rates

9t+1 =0; — Mveg(eu U, Ut)
|:ut+1:| _ [Ut} . [Vug(etautavt)]
Vi1 vy Vog(0s, us, vy)

Theorem (informal) If gradient descent with infinitesimallly small
initialization and step size p converges to (0, u,v), then (8, u®u —
v ® V) is an optimal solution to the following convex problem

1 1
in=|@0)2+ =|s|i, st y=J-0
rg}sn2|| “2+a||8”1 sty +s

Exactly recover (0, s,) when J is incoherent [Candes & Tao'05].
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A Sparse Over-Parameterization (SOP) Method

{0%, 20%,40%} percent of labels for CIFAR-10 training data are randomly
flipped uniformly to another class. Use ResNet34.

1.0 1.0
0.8 0.8
ey >
g 0.6 § 0.6
&J E ......... CE 0%
£S04 CE 20% 0.4 CE 20%
= CE 40% = CE 40%
02 —— SOP 0% 021 T SOP 0%
—— SOP 20% “| —— SOP 20%
—— SOP 40% —— SOP 40%
0.0 0.0
0 50 100 150 0 50 100 150
Epoch Epoch

SOP trains a deep image classification networks without overfitting to
wrong labels and obtain better generalization performance
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SOP on CIFAR-10 with human annotated noisy labels

CIFAR-10N: provide CIFAR-10 with human annotated noisy labels®

e Annotated by 747 ind dent work
nnotated by Inaepenaent workers e AN - BEEDS

® Provide 5 noisy label sets for CIFAR-10 awomonie - 21 20 0 2 il k) o
S . o Elmall WES ¥ R
train Images: cat a.....!

e Random i = 1,2, 3: the i-th submitted - E==gg%g=%=

label for each image; w DEEEEZSAESE
. . . rose S RER O DI GRS TR
e Aggregate: aggregation of three noisy N T
labels by majority voting o o T e 0 158 O A R R
® Worst: label set with the highest noise rate

CIFAR-10N CIFAR-10N CIFAR-10N CIFAR-10N CIFAR-10N

Label Set
Aggregate Random 1 Random 2 Random 3 Worst

Noise Rate 9.03% 17.23% 18.12% 17.64% 40.21%

8Wei et al., Learning with noisy labels revisited: A study using real-world human annotations, ICLR 2022.
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SOP on CIFAR-10 with human annotated noisy labels

Method CIFAR-10N
D Clean Aggregate Random 1 Random 2 Random 3 Worst
CE (Standard) 9292+ 0.11 87.77+£038 8502+0.65 8646+179 85.16+0.61 77.69+ 1.55

Forward T' (Patrini et al., 2017) | 93.024+0.12 88.24 £0.22 86.88£0.50 86.14+0.24 87.04 £0.35 79.79 & 0.46
Backward 7' (Patrini et al., 2017) | 93.10 £ 0.05 88.13 £0.29 87.144+0.34 8628 +0.80 86.86+0.41 77.61+1.05
GCE (Zhang & Sabuncu, 2018) | 92.83 +0.16 87.85+0.70 87.61 £0.28 87.70+0.56 87.58 £0.29 80.66 & 0.35
Co-teaching (Han et al., 2018) 9335+0.14 91.20£0.13 90.33+0.13 90.30+0.17 90.15+0.18 83.83+0.13
Co-teaching+ (Yu et al., 2019) 92.41+0.20 90.61 £022 89.70+0.27 89.47+0.18 89.54+022 83.26+0.17
T-Revision (Xia et al., 2019) 9335+0.23 88.52+0.17 88334032 87.71+£1.02 87.79+0.67 80.48+1.20
Peer Loss (Liu & Guo, 2020) 93.99+0.13 90.75+£025 89.06+0.11 88.76+0.19 88.57+0.09 82.00+0.60

ELR (Liu et al., 2020) 9345+ 0.65 9238 £0.64 9146+0.38 91.61+£0.16 91.41+044 83.58+1.13
ELR+ (Liu et al., 2020) 9539+0.05 94.83+£0.10 9443+041 9420+0.24 94344022 91.09+1.60
Positive-LS (Lukasik et al., 2020) | 94.77 £0.17 91.57 £0.07 89.804+0.28 89.35+0.33 89.82+0.14 82.76 +0.53
F-Div (Wei & Liu, 2020) 9488 +£0.12 91.64 £0.34 89.70+0.40 89.79+0.12 89.55+0.49 82.53+0.52

Divide-Mix (Li et al., 2020) 9537+ 0.14 95.01£0.71 9516+0.19 95.23+0.07 9521+0.14 92.56 + 0.42
Negative-LS (Wei et al., 2021) 94.92+0.25 91.97+£046 90294032 90.37+0.12 90.13+0.19 8299 +0.36
JoCoR (Wei et al., 2020) 9340+ 0.24 91.44+005 90304020 90.21+0.19 90.11+0.21 83.37+0.30
CORES? (Cheng et al., 2021) 9343+0.24 91.23+£0.11 89.66+0.32 89.91+045 89.79+0.50 83.60+0.53
CORES* (Cheng et al., 2021) 94.16 £ 0.11 9525+0.09 9445+0.14 94.88+0.31 94.74+0.03 91.66 %+ 0.09
VolMinNet (Li et al., 2021) 92.14+0.30 89.70 £021 8830+0.12 88.27+0.09 88.19+0.41 80.5340.20

CAL (Zhu et al., 2021a) 9450+ 0.31 91.97£032 90934031 90.75+£0.30 90.74 +0.24 85.36+0.16
PES (Semi) (Bai et al., 2021) 9476 £0.2 94.66 £0.18 95.06+0.15 95.19 +£0.23 9522 +0.13 92.68 + 0.22
SOP (Liuetal., 2022) N/A 95.61 £0.13 9528 +0.13 95.31+0.10 9539 +0.11 93.24 +0.21

Sparse modeling gives super performance again label noise®

9Wei et al., Learning with noisy labels revisited: A study using real-world human annotations, ICLR 2022.
Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML'22.
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Conclusion and Coming Attractions

Learning common deep networks for low-dim structure
¢ Low-dimensional data: understand resource tradeoffs between data
structure and network architecture
¢ Low-dimensional features: understand low-dim. features (NC)
learned in deep classifiers trained with one-hot labeling based losses

® Robust training: Exploit low-dim structure in the label noise to
improve training robustness

Next lecture: New approach for learning diverse and discriminative
features (beyond NC).
Designing deep network architectures for low-dimensional structures

Thank You! Questions?



Looking Inside: Neural Collapse in the Multiple Manifold Problem
Figure Credits |

¢ Slide 3: Dictionary learning figures from [Mairal, Elad, and Sapiro
2008]

® Slide 4: ImageNet classes from paperswithcode.com; AlexNet
architecture: [Krizhevsky et al. 2012]; ResNet architecture: [He et al.
2015];

® Slide 5: ImageNet topl from paperswithcode.com; DALL-E 1 and 2
from https://openai.com/blog/dall-e/ and
https://openai.com/dall-e-2/

® Slide 7: Right image from
https://www.cityscapes-dataset.com/dataset-overview/

® Slide 8: Hairbrushes from https://objectnet.dev/download.html

e Slide 9: Illumination figure from [Basri and Jacobs 2003]

® Slide 13: Left figure from [Krizhevsky et al. 2012]; right from
https://openai.com/blog/microscope/;
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