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Recap and Outlook

Recap: Sparse Approximation (Linear, Convex)72 Convex Methods for Sparse Signal Recovery

xo

Coe�cient space Rn `1 ball B1

Linear embedding A

Observation space Rm

y = Axo

observation

Polytope

P = A(B1)

Figure 3.3 Observation-Space Picture. The `1 ball is a convex polytope B1 in the
coe�cient space Rn. The linear map A projects this down to a lower dimensional set
P = A(B1) in the observation space Rm. The vertices vi of P are subsets of the
projections A⌫j of B1.

Observation Space Picture

We can also visualize `1 minimization in the space Rm of observation vectors y.

This picture is slightly more complicated, but turns out to be very useful. The

m ⇥ n matrix A maps n-dimensional vectors x to m ⌧ n dimensional vectors

y. Let us consider how the matrix A acts on the `1 ball B1 ⇢ Rn. Applying A

to each of the vectors x 2 B1, we obtain a lower-dimensional object P = A(B1),

which we visualize in Figure 3.3 (right). The lower-dimensional set P is a convex

polytope. Every vertex v of P is the image A⌫ of some vertex ⌫ = ±ei of B1.

More generally, every k-dimensional face of P is the image of some face of B1.

The polytope P consists of all points y0 of the form Ax0 for some x0 with

objective function kx0k1  1. `1 minimization corresponds to squeezing B1 down

to the origin, and then slowly expanding it until it first touches y. The touching

point is the image Ax̂ of the `1 minimizer – see Figure 3.4.

So, `1 will correctly recover xo whenever Axo is on the outside of P = A(B1).

For example, in Figure 3.3, all of the vertices of B1 map to the outside of A(B1),

and so `1 recovers any 1-sparse xo. However, certain edges (one-dimensional

faces) of B1 map to the inside of A(B1). `
1 minimization will not recover these

xo.

From this picture, it may be very surprising that `1 works as well as it does.

However, as we will see in the remainder of this chapter, the high-dimensional

picture di↵ers significantly from the low-dimensional picture (and our intuition!)
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Figure 3.15 Phase Transition in Sparse Recovery with Gaussian Matrices.
Each display plots the fraction of correct recoveries using `1 minimization, over a
suite of randomly generated problems. The vertical axis represents the fraction of
nonzero entries ⌘ = k/n in the target vector xo – the bottom corresponds to very
sparse vectors, while the top corresponds to fully dense vectors. The horizontal axis
represents the sampling ratio � = m/n – the left corresponds to drastically under
sampled problems (m⌧ n), while the right corresponds to almost fully observed
problems. For each (⌘, �) pair, we generate 200 random problems, which we solve
using CVX. We declare success if the recovered vector is accurate up to a relative
error  10�6. Several salient features emerge: first, there is an easy regime (lower
right corner) in which `1 minimization always succeeds. Second, there is a hard
regime (upper left corner) in which `1 minimization always fails. Finally, as n
increases, this transition between success and failure becomes increasingly sharp.

entries k that we can recover. We would like these relationships to be as sharp

and explicit as possible. To get some intuition for what to expect, we again resort

to numerical simulation. We fix n, and consider di↵erent levels of sparsity k, and

numbers of measurements m. For each pair (k, m), we generate a number of

random `1 minimization problems, with noiseless Gaussian measurements y =

Axo, and ask “For what fraction of these problems does `1 minimization correctly

recover xo?”

Figure 3.15 displays the result as a two dimensional image. Here, the horizontal

axis is the sampling ratio � = m/n. This ranges from zero on the left (a very

short, wide A) to one on the right (a nearly square A). The vertical axis is

the fraction of nonzeros ⌘ = k/n. Again, this ranges from zero at the bottom

(very sparse problems) to one at the top (denser problems). For each pair (⌘, �),

we generate 200 random problems. The intensity is the fraction of problems for

which `1 minimization succeeds. The four graphs, from left to right, show the

result for n = 50, 100, 200, 400.

This figure conveys several important pieces of information. First, as expected,

when m is large and k is small (the lower right corner of each graph), `1 mini-

mization always succeeds. Conversely, when m is small and k is large (the upper

left corner of each graph), `1 minimization always fails. Moreover, as n grows, the

transition between success and failure becomes increasingly abrupt. Put another

way, for high-dimensional problems, the behavior of `1 minimization is surpris-

ingly predictable: it either almost always succeeds, or almost always fails. The

line demarcating the sharp boundary between success and failure is known as a

phase transition.

Sparse approximation: structured signals, linear measurements

y = Axo, xo sparse, A ∈ Rm×n random

with convex optimization

x? = arg min
x∈Rn

1

2
‖y −Ax‖22 + λ‖x‖1

and provable (high probability) guarantees

x? = xo when measurements & sparsity× log

(
measurements

sparsity

)
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Recap and Outlook

Recap: Dictionary Learning (Bilinear, Nonconvex)

Dictionary Learning: structured signals, bilinear measurements

Y = AoXo ∈ Rn×p, Xo sparse and random, A∗oAo ≈ I

with (efficient) nonconvex optimization

a? = arg min
‖a‖2=1

‖Y ∗a‖1

and provable (high probability) guarantees

a? ≈ (Ao)j when observations ≥ poly(expected sparsity)
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Recap and Outlook

Today: Deep Learning (Very Nonlinear, Extra Nonconvex)
Supervised Deep Learning: Given labeled data






 xi︸︷︷︸

data (images, text, ...)

, yi︸︷︷︸
labels (classes, values, ...)







N

i=1

fit a mapping f : parameters × data→ labels

using stochastic gradient descent on a task-appropriate loss

θ? = SGDθ

(
1

2

N∑

i=1

‖fθ(xi)− yi‖22

)

︸ ︷︷ ︸
regression
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Recap and Outlook

Today’s Lectures

Image Classification on ImageNet

Big question: What role does low-dimensional structure play in
the practice of deep learning?
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Recap and Outlook

Outlook for Today’s Lectures

Answer: A huge role!

Today:

• Nonlinear low-dimensional structures in practical data necessitate the
use of deep networks over classical models;

• A mathematical model problem helps understand resource
tradeoffs between data geometry and network architecture
(a nonlinear generalization of the sparse approximation analysis!);

• For classification problems, understand the features learned by deep
neural networks, and improve training robustness using insights from
low-dimensional structure;

• Whitebox design of deep networks for pursuing nonlinear low-dim
structures. (Lecture 5)
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Outline
Recap and Outlook

1 Motivating Examples for Low-Dim Structure in Deep Learning

2 Resource Tradeoffs in the Multiple Manifold Problem
Problem Formulation
Intrinsic Geometric Properties of Manifold Data
Network Architecture Resources and Training Procedure
Training Deep Networks with Gradient Descent
Resource Tradeoffs

3 Looking Inside: Neural Collapse in the Multiple Manifold Problem
Learned low-dimensional features—NC phenomena
Geometric analysis for understanding neural collapse
Exploit NC for improving training efficiency
Exploit NC for understanding the effect of loss functions

4 Exploit Sparse Model for Robust training



Motivating Examples for Low-Dim Structure in Deep Learning

Low-Dimensional Structure in Deep Learning Problems

Questions:

What is an appropriate mathematical model for data with
low-dimensional structure in deep learning applications?

What insights into practical deep learning can we get by studying
low-dimensional structure?
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Motivating Examples for Low-Dim Structure in Deep Learning

Vignette I: Large-Scale Image Classification

Task: Learn a deep network mapping images→ object classes from data.

→ {hedgehog,
hairbrush}

Massive driver of innovation in the last 10 years (ImageNet, ResNet, ...)
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Motivating Examples for Low-Dim Structure in Deep Learning

Nonlinear Variabilities in Natural Images
Structure in natural data

Structure in natural data is due to

I Statistical variability

COMPLEX

I Physical nuisances (pose, illumination, etc.)

SIMPLE

2 / 50

Structure in natural data
Structure in natural data is due to

I Statistical variability

COMPLEX

I Physical nuisances (pose, illumination, etc.)

SIMPLE

2
0
2
1
-0

8
-0

9 Manifold Classification with Deep

Neural Networks

Structure in natural data

Succeeds up to >45o of pose:: 

Succeeds up to translations of 20% of face width, up to 30o in-plane rotation:: 

Recognition rate for synthetic misalignments (Multi-PIE) 

Wagner, W., Ganesh, Zhou, Ma.  CVPR 2009 

How well does it work? 

=⇒ nonlinear, geometric structure

• 6D for 3D rigid pose; 8D for perspective; 9D for certain illumination...
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Motivating Examples for Low-Dim Structure in Deep Learning

Limitations of a Purely Data-Driven Approach?

Can fail to learn even simple invariances in the data:

From [Azulay and Weiss, 2019]
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Motivating Examples for Low-Dim Structure in Deep Learning

Vignette II: Deep Learning in Scientific Discovery

One binary black hole merger:

Gravitational Wave AstronomyGravitational waves

Video: LIGO Lab Caltech : MIT (https://www.youtube.com/watch?v=1agm33iEAuo) 2

Top image, audio: LIGO Scientific Collaboration (https://www.ligo.org/science/GW-Inspiral.php)
Bottom image: Abbott, Benjamin P., et al. "Observation of gravitational waves from a binary black hole merger." Physical review 

letters 116.6 (2016): 061102. 3

Top image, audio: LIGO Scientific Collaboration (https://www.ligo.org/science/GW-Inspiral.php)
Bottom image: Abbott, Benjamin P., et al. "Observation of gravitational waves from a binary black hole merger." Physical review 

letters 116.6 (2016): 061102. 3

Many mergers

(varying mass M1, M2):

=⇒ low-dim manifold
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Motivating Examples for Low-Dim Structure in Deep Learning

Gravitational Wave Astronomy as Parametric Detection

0

⇢0

S�

⇢1

MF

Optimal

Is observation x = sγ + z or x = z?
=⇒ two (noisy) manifolds!

Classical approach: template matching maxγ〈aγ ,x〉 > τ?
Issues: Optimality? Complexity?

Unknown unknowns? Unknown noise?

Ideally: Combine low-dim structure of Γ with data-driven for statistical structure...
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Motivating Examples for Low-Dim Structure in Deep Learning

Vignette III: Learning Features with Deep Learning for
Downstream Tasks

Ubiquitous deep learning workflow (science/engineering/industry):

1 Data-driven pretraining to learn good features (ImageNet pretraining;
masked prediction)

2 Fine-tuning on specific downstream tasks for performance (tracking;
segmentation; object detection; ...)

First-layer filters from AlexNet Inception v4 activations Neural collapse visualization

Issues: What features are learned? Robustness to imperfect labeling? How to

incorporate prior knowledge about data/task?

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 13 / 85



Motivating Examples for Low-Dim Structure in Deep Learning

Takeaways from the Examples

Two key takeaways:

• Data with nonlinear, geometric structure pervade successful
practical applications of deep learning

• Important practical issues (robustness/invariance; resource
efficiency; performance) naturally linked to low-dim structure

Next: Understanding mathematically when and why deep learning
successfully classifies data with nonlinear geometric structure.

=⇒

Hedgehogs

Hairbrushes
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Outline
Recap and Outlook

1 Motivating Examples for Low-Dim Structure in Deep Learning

2 Resource Tradeoffs in the Multiple Manifold Problem
Problem Formulation
Intrinsic Geometric Properties of Manifold Data
Network Architecture Resources and Training Procedure
Training Deep Networks with Gradient Descent
Resource Tradeoffs

3 Looking Inside: Neural Collapse in the Multiple Manifold Problem
Learned low-dimensional features—NC phenomena
Geometric analysis for understanding neural collapse
Exploit NC for improving training efficiency
Exploit NC for understanding the effect of loss functions

4 Exploit Sparse Model for Robust training



Resource Tradeoffs in the Multiple Manifold Problem Problem Formulation

A Mathematical Model Problem for Deep Learning +
Low-Dimensional Structure

Formalizing data with nonlinear geometric structure:
Low-dimensional Riemannian submanifolds of high-dimensional space!

Hedgehogs

Hairbrushes

=⇒
 
 
 
 
 

Sn0−1

M+

M−
ρ

1/κ

∆

The multiple manifold problem: K-way classification of data on
d-dimensional Riemannian manifolds in Sn0−1.

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 15 / 85



Resource Tradeoffs in the Multiple Manifold Problem Problem Formulation

The Two Manifold Problem

 
 
 
 
 

Sn0−1

M+

M−
ρ

1/κ

∆

Problem. Given N i.i.d. labeled samples (x1, y(x1)), . . . ,
(xN , y(xN )) fromM =M+ ∪M−, use gradient descent to train a
deep network fθ that perfectly labels the manifolds:

sign (fθ(x)) = y(x) for all x ∈M.
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Resource Tradeoffs in the Multiple Manifold Problem Problem Formulation

The Two Manifold Problem: Key Aspects

 
 
 
 
 

Sn0−1

M+

M−
ρ

1/κ

∆

Problem. Given N i.i.d. labeled sam-
ples (x1, y(x1)), . . . , (xN , y(xN )) from
M = M+ ∪ M−, use gradient descent to
train a deep network fθ that perfectly labels
the manifolds:

sign (fθ(x)) = y(x) ∀x ∈ M.

• Binary classification with a deep neural network

• High-dimensional data with (unknown!) low-dimensional structure

• Statistical structure, and asking for “strong” generalization

We will focus on the case of one-dimensional manifolds (curves)
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Resource Tradeoffs in the Multiple Manifold Problem Problem Formulation

What Can We Hope to Understand Here?
Our “barometer”: compressed sensing.72 Convex Methods for Sparse Signal Recovery

xo

Coe�cient space Rn `1 ball B1

Linear embedding A

Observation space Rm

y = Axo

observation

Polytope

P = A(B1)

Figure 3.3 Observation-Space Picture. The `1 ball is a convex polytope B1 in the
coe�cient space Rn. The linear map A projects this down to a lower dimensional set
P = A(B1) in the observation space Rm. The vertices vi of P are subsets of the
projections A⌫j of B1.

Observation Space Picture

We can also visualize `1 minimization in the space Rm of observation vectors y.

This picture is slightly more complicated, but turns out to be very useful. The

m ⇥ n matrix A maps n-dimensional vectors x to m ⌧ n dimensional vectors

y. Let us consider how the matrix A acts on the `1 ball B1 ⇢ Rn. Applying A

to each of the vectors x 2 B1, we obtain a lower-dimensional object P = A(B1),

which we visualize in Figure 3.3 (right). The lower-dimensional set P is a convex

polytope. Every vertex v of P is the image A⌫ of some vertex ⌫ = ±ei of B1.

More generally, every k-dimensional face of P is the image of some face of B1.

The polytope P consists of all points y0 of the form Ax0 for some x0 with

objective function kx0k1  1. `1 minimization corresponds to squeezing B1 down

to the origin, and then slowly expanding it until it first touches y. The touching

point is the image Ax̂ of the `1 minimizer – see Figure 3.4.

So, `1 will correctly recover xo whenever Axo is on the outside of P = A(B1).

For example, in Figure 3.3, all of the vertices of B1 map to the outside of A(B1),

and so `1 recovers any 1-sparse xo. However, certain edges (one-dimensional

faces) of B1 map to the inside of A(B1). `
1 minimization will not recover these

xo.

From this picture, it may be very surprising that `1 works as well as it does.

However, as we will see in the remainder of this chapter, the high-dimensional

picture di↵ers significantly from the low-dimensional picture (and our intuition!)
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Figure 3.15 Phase Transition in Sparse Recovery with Gaussian Matrices.
Each display plots the fraction of correct recoveries using `1 minimization, over a
suite of randomly generated problems. The vertical axis represents the fraction of
nonzero entries ⌘ = k/n in the target vector xo – the bottom corresponds to very
sparse vectors, while the top corresponds to fully dense vectors. The horizontal axis
represents the sampling ratio � = m/n – the left corresponds to drastically under
sampled problems (m⌧ n), while the right corresponds to almost fully observed
problems. For each (⌘, �) pair, we generate 200 random problems, which we solve
using CVX. We declare success if the recovered vector is accurate up to a relative
error  10�6. Several salient features emerge: first, there is an easy regime (lower
right corner) in which `1 minimization always succeeds. Second, there is a hard
regime (upper left corner) in which `1 minimization always fails. Finally, as n
increases, this transition between success and failure becomes increasingly sharp.

entries k that we can recover. We would like these relationships to be as sharp

and explicit as possible. To get some intuition for what to expect, we again resort

to numerical simulation. We fix n, and consider di↵erent levels of sparsity k, and

numbers of measurements m. For each pair (k, m), we generate a number of

random `1 minimization problems, with noiseless Gaussian measurements y =

Axo, and ask “For what fraction of these problems does `1 minimization correctly

recover xo?”

Figure 3.15 displays the result as a two dimensional image. Here, the horizontal

axis is the sampling ratio � = m/n. This ranges from zero on the left (a very

short, wide A) to one on the right (a nearly square A). The vertical axis is

the fraction of nonzeros ⌘ = k/n. Again, this ranges from zero at the bottom

(very sparse problems) to one at the top (denser problems). For each pair (⌘, �),

we generate 200 random problems. The intensity is the fraction of problems for

which `1 minimization succeeds. The four graphs, from left to right, show the

result for n = 50, 100, 200, 400.

This figure conveys several important pieces of information. First, as expected,

when m is large and k is small (the lower right corner of each graph), `1 mini-

mization always succeeds. Conversely, when m is small and k is large (the upper

left corner of each graph), `1 minimization always fails. Moreover, as n grows, the

transition between success and failure becomes increasingly abrupt. Put another

way, for high-dimensional problems, the behavior of `1 minimization is surpris-

ingly predictable: it either almost always succeeds, or almost always fails. The

line demarcating the sharp boundary between success and failure is known as a

phase transition.

y = Axo; x? = arg min
x∈Rn

1

2
‖y −Ax‖22 + λ‖x‖1

x? = xo when measurements & sparsity× log

(
measurements

sparsity

)

Questions:
What are our ‘measurement resources’ in the two manifold problem?
What are intrinsic structural properties of nonlinear manifold data?
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Resource Tradeoffs in the Multiple Manifold Problem Intrinsic Geometric Properties of Manifold Data

The Two Manifold Problem: Geometric Parameters

 
 
 
 
 

Sn0−1

M+

M−
ρ

1/κ

∆

Problem. Given N i.i.d. labeled sam-
ples (x1, y(x1)), . . . , (xN , y(xN )) from
M = M+ ∪ M−, use gradient descent to
train a deep network fθ that perfectly labels
the manifolds:

sign (fθ(x)) = y(x) ∀x ∈ M.

A set of ‘sufficient’ intrinsic problem difficulty parameters:

• Curvature κ;

• Separation ∆;

• Separation ‘frequency’ V.
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Resource Tradeoffs in the Multiple Manifold Problem Intrinsic Geometric Properties of Manifold Data

Intrinsic Structural Properties I: Separation

Intuitively: How close are the class manifolds?

 
 
 
 
 

Sn0−1

M+

M−
ρ

1/κ

∆

Mathematically:
∆ = inf

x,x′∈M

{
dextrinsic(x,x

′)
}
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Resource Tradeoffs in the Multiple Manifold Problem Intrinsic Geometric Properties of Manifold Data

Intrinsic Structural Properties II: Curvature

Intuitively: Local deviation from flatness of the manifold.

 
 
 
 
 

Sn0−1

M+

M−
ρ

1/κ

∆

Mathematically:

κ = sup
x∈M

∥∥∥∥
(
I − xx∗

‖x‖22

)
ẍ

∥∥∥∥
2
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Resource Tradeoffs in the Multiple Manifold Problem Intrinsic Geometric Properties of Manifold Data

Intrinsic Structural Properties III: V-Number

Intuitively: How much do the class manifolds loop back on themselves?

x

Mathematically:

V(M) = sup
x∈M

NM

({
x′
∣∣∣∣
dintrinsic(x,x

′) > τ1
dextrinsic(x,x

′) < τ2

}
,

1√
1 + κ2

)

Here, NM(T, δ) is the covering number of T ⊆M by δ balls in dintrinsic.
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Resource Tradeoffs in the Multiple Manifold Problem Intrinsic Geometric Properties of Manifold Data

The Two Manifold Problem: Geometric Parameters

 
 
 
 
 

Sn0−1

M+

M−
ρ

1/κ

∆

Problem. Given N i.i.d. labeled sam-
ples (x1, y(x1)), . . . , (xN , y(xN )) from
M = M+ ∪ M−, use gradient descent to
train a deep network fθ that perfectly labels
the manifolds:

sign (fθ(x)) = y(x) ∀x ∈ M.

A set of ‘sufficient’ intrinsic problem difficulty parameters:

• Curvature κ;

• Separation ∆;

• Separation ‘frequency’ V.
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Resource Tradeoffs in the Multiple Manifold Problem Network Architecture Resources and Training Procedure

Network Architecture and Training Procedure

• Fully connected with ReLUs

• Gaussian initialization θ0
• Trained with N i.i.d. samples

from measure µ of density ρ
. . .

. . .

...
...

...
...

...
...

. . .

Output fθ(x)

Input x ∈ Sn0−1

Width n

Depth L

N
(
0, 2

n

)

N
(
0, 2

n

)

N (0, 1)
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Resource Tradeoffs in the Multiple Manifold Problem Network Architecture Resources and Training Procedure

Resource Tradeoffs: From Linear to Nonlinear
The “linear” case (compressed sensing):72 Convex Methods for Sparse Signal Recovery

xo

Coe�cient space Rn `1 ball B1

Linear embedding A

Observation space Rm

y = Axo

observation

Polytope

P = A(B1)

Figure 3.3 Observation-Space Picture. The `1 ball is a convex polytope B1 in the
coe�cient space Rn. The linear map A projects this down to a lower dimensional set
P = A(B1) in the observation space Rm. The vertices vi of P are subsets of the
projections A⌫j of B1.

Observation Space Picture

We can also visualize `1 minimization in the space Rm of observation vectors y.

This picture is slightly more complicated, but turns out to be very useful. The

m ⇥ n matrix A maps n-dimensional vectors x to m ⌧ n dimensional vectors

y. Let us consider how the matrix A acts on the `1 ball B1 ⇢ Rn. Applying A

to each of the vectors x 2 B1, we obtain a lower-dimensional object P = A(B1),

which we visualize in Figure 3.3 (right). The lower-dimensional set P is a convex

polytope. Every vertex v of P is the image A⌫ of some vertex ⌫ = ±ei of B1.

More generally, every k-dimensional face of P is the image of some face of B1.

The polytope P consists of all points y0 of the form Ax0 for some x0 with

objective function kx0k1  1. `1 minimization corresponds to squeezing B1 down

to the origin, and then slowly expanding it until it first touches y. The touching

point is the image Ax̂ of the `1 minimizer – see Figure 3.4.

So, `1 will correctly recover xo whenever Axo is on the outside of P = A(B1).

For example, in Figure 3.3, all of the vertices of B1 map to the outside of A(B1),

and so `1 recovers any 1-sparse xo. However, certain edges (one-dimensional

faces) of B1 map to the inside of A(B1). `
1 minimization will not recover these

xo.

From this picture, it may be very surprising that `1 works as well as it does.

However, as we will see in the remainder of this chapter, the high-dimensional

picture di↵ers significantly from the low-dimensional picture (and our intuition!)

3.6 Phase Transitions in Sparse Recovery 115
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Figure 3.15 Phase Transition in Sparse Recovery with Gaussian Matrices.
Each display plots the fraction of correct recoveries using `1 minimization, over a
suite of randomly generated problems. The vertical axis represents the fraction of
nonzero entries ⌘ = k/n in the target vector xo – the bottom corresponds to very
sparse vectors, while the top corresponds to fully dense vectors. The horizontal axis
represents the sampling ratio � = m/n – the left corresponds to drastically under
sampled problems (m⌧ n), while the right corresponds to almost fully observed
problems. For each (⌘, �) pair, we generate 200 random problems, which we solve
using CVX. We declare success if the recovered vector is accurate up to a relative
error  10�6. Several salient features emerge: first, there is an easy regime (lower
right corner) in which `1 minimization always succeeds. Second, there is a hard
regime (upper left corner) in which `1 minimization always fails. Finally, as n
increases, this transition between success and failure becomes increasingly sharp.

entries k that we can recover. We would like these relationships to be as sharp

and explicit as possible. To get some intuition for what to expect, we again resort

to numerical simulation. We fix n, and consider di↵erent levels of sparsity k, and

numbers of measurements m. For each pair (k, m), we generate a number of

random `1 minimization problems, with noiseless Gaussian measurements y =

Axo, and ask “For what fraction of these problems does `1 minimization correctly

recover xo?”

Figure 3.15 displays the result as a two dimensional image. Here, the horizontal

axis is the sampling ratio � = m/n. This ranges from zero on the left (a very

short, wide A) to one on the right (a nearly square A). The vertical axis is

the fraction of nonzeros ⌘ = k/n. Again, this ranges from zero at the bottom

(very sparse problems) to one at the top (denser problems). For each pair (⌘, �),

we generate 200 random problems. The intensity is the fraction of problems for

which `1 minimization succeeds. The four graphs, from left to right, show the

result for n = 50, 100, 200, 400.

This figure conveys several important pieces of information. First, as expected,

when m is large and k is small (the lower right corner of each graph), `1 mini-

mization always succeeds. Conversely, when m is small and k is large (the upper

left corner of each graph), `1 minimization always fails. Moreover, as n grows, the

transition between success and failure becomes increasingly abrupt. Put another

way, for high-dimensional problems, the behavior of `1 minimization is surpris-

ingly predictable: it either almost always succeeds, or almost always fails. The

line demarcating the sharp boundary between success and failure is known as a

phase transition.

y = Axo; x? = arg min
x∈Rn

1

2
‖y −Ax‖22 + λ‖x‖1

x? = xo when measurements & sparsity× log

(
measurements

sparsity

)
Our current nonlinear setting:
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M−
ρ

1/κ

∆

Data structure

. . .

. . .

...
...

...
...

...
...

. . .

Output fθ(x)

N i.i.d. data samples

Width n

Depth L

Architectural resources
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Resource Tradeoffs in the Multiple Manifold Problem Network Architecture Resources and Training Procedure

The Two Manifold Problem: Resource Tradeoffs

 
 
 
 
 

Sn0−1

M+

M−
ρ

1/κ

∆

. . .

. . .

...
...

...
...

...
...

. . .

Output fθ(x)

N i.i.d. data samples

Width n

Depth L

Theory question: How should we set resources (depth L, width n,

samples N) relative to data structure (separation ∆, V; curvature
κ; density ρ) so that gradient descent succeeds?

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 26 / 85



Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Gradient Descent Training

Objective: Square Loss on Training Data

min
θ
ϕ(θ) ≡ 1

2

∫

M
(fθ(x)− y(x))2 dµN (x).

Does gradient descent correctly label the manifolds?

One Approach: Geometry (from symmetry!) in parameter space:

Dictionary
Learning

Sparse Blind
Deconvolution

Matrix
Recovery

See [Gilboa, B., Wright ’18], survey [Zhang, Qu, Wright 20] (Lecture 3!)
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Gradient Descent Training

Objective: Square Loss on Training Data

min
θ
ϕ(θ) ≡ 1

2

∫

M
(fθ(x)− y(x))2 dµN (x).

Does gradient descent correctly label the manifolds?
Today’s talk: Dynamics in input-output space:

Dictionary
Learning

Sparse Blind
Deconvolution

Matrix
Recovery

Neural Tangent Kernel

Θ(x,x′) =
〈
∂fθ(x)
∂θ , ∂fθ(x

′)
∂θ

〉

Measures ease of independently adjusting fθ(x), fθ(x′)

Follows [Jacot et. al. 18], many recent works.
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

Objective: Square Loss on Training Data

min
θ
ϕ(θ) ≡ 1

2

∫

M
(fθ(x)− y(x))2 dµN (x).

Signed error: ζ(x) = fθ(x)− y(x).

Gradient flow: θ̇t = −∇θϕ(θt) = −
∫
M

∂fθ
∂θ

∣∣
θ=θt

(x)ζt(x)dµN (x).
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

The error evolves according to the NTK:

ζ̇t(x) =
∂fθ(x)

∂θ

∣∣∣
∗

θ=θt
θ̇t

= −∂fθ(x)

∂θ

∣∣∣
∗

θ=θt

∫

M

∂fθ(x′)

∂θ

∣∣∣
θ=θt

ζt(x
′)dµN (x′)

= −
∫

M

〈
∂fθ(x)

∂θ

∣∣∣
θ=θt

,
∂fθ(x′)

∂θ

∣∣∣
θ=θt

〉
ζt(x

′)dµN (x′)

= −
∫

M
Θt(x,x

′)ζt(x
′)dµN (x′)

= −Θt[ζt](x).
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent (“NTK Regime”)

When width and number of data samples are large, we have (whp)

sup
t
‖Θt −Θ‖L2→L2 = owidth(1)

throughout training.

=⇒ LTI dynamics
ζ̇t = −Θ[ζt]

=⇒ Fast decay if ζt is aligned with lead eigenvectors of Θ!
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of Θ are intractable!

Definition. g :M→ R is called a certificate if for all x ∈M

fθ0(x)− y(x)
mean≈
square

∫

M
Θ(x,x′)g(x′) dµ(x′)

and
∫
M (g(x′))2 dµ(x′) is small.
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Resource Tradeoffs in the Multiple Manifold Problem Training Deep Networks with Gradient Descent

Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of Θ are intractable!

Definition. g :M→ R is called a certificate if for all x ∈M

fθ0(x)− y(x)
mean≈
square

∫

M
Θ(x,x′)g(x′) dµ(x′)

and
∫
M (g(x′))2 dµ(x′) is small.

Lemma. (informal) If a certificate g exists for M, then

‖ζt‖L2
µ
. L logL

t
.
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Roles of Width, Depth, and Data

ζ̇t = −Θ[ζt]

Questions:
How do width, depth, and samples affect Θ?
How does Θ depend on the geometry of the data?

Depth L: fitting resource

1
L

Θ(e1,x
′), L = 125

Width n: statistical resource

0 π/2 π

∠(x,x′)

0

Θ
N

T
K

(x
,x
′ )
/n

n

10 100 400 1000 Eθ0

[
ΘNTK

]
/n
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:

1 Θ decays with angle.

2 Faster decay as depth
increases.

=⇒ Set depth based on
geometry!

1
L

Θ(e1,x
′), L = 5

Deeper networks fit more complicated geometries.
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Key insights:

1 Θ decays with angle.

2 Faster decay as depth
increases.
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Deeper networks fit more complicated geometries.

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 34 / 85



Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs I: Certificates from Depth

Numerical experiment:
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Depth as a fitting resource: Larger depth L leads to a sharper kernel Θ
and a smaller certificate g
=⇒ Easier fitting!
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs II: Width as a Statistical Resource

. . .

. . .

. . .

. . .

Output fθ(x)

Input x ∈ Sn0−1

0 :/2 :
6 (x,x0)

0

#̂
(x

,x
0 )
/
n

10 100 400 1000 #̂

n

As width increases, Θ(x,x′) concentrates about Einit weights[Θ(x,x′)]
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs II: Width as a Statistical Resource

Proposition. Suppose that n > Lpolylog(Ln0). Then (whp)

∣∣∣∣∣Θ(x,x′)− n

2

∑

`

cos(ϕ`ν)

L−1∏

`′=`

(
1− ϕ`

′
ν

π

)∣∣∣∣∣

is small (simultaneously) for all (x,x′) ∈M×M.

⇒ set width n based on depth L

and implicitly based on κ,∆
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

Resource Tradeoffs III: Data as a Statistical Resource

Depth L = 50

⇒ Sample complexity N is dictated by kernel “aperture”, which
depends on geometry (κ,∆) via L
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Resource Tradeoffs in the Multiple Manifold Problem Resource Tradeoffs

End-to-End Generalization Guarantee

Theorem [B., Wang, Gilboa, Wright 2021]: For sufficiently reg-
ular one-dimensional manifolds and ReLU networks, when

depth ≥ geometry, width ≥ poly(depth), data ≥ poly(depth),

randomly-initialized small-stepping gradient descent perfectly classi-
fies the two manifolds!

Upshot:

• We understand the role each resource plays in solving the
classification problem.

• We understand how intrinsic geometric properties of the data drive
these resource requirements.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem

Image Classification Problem I

So far, Sam has talked about resources needed to ensure correctly classify
two manifolds.

We will now focus on the general classification of K manifolds.

Instead of just on the output, we will focus more on the learned features
and classifiers.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem

Image Classification Problem II

Labels: k = 1, . . . ,K

• K = 10 classes (MNIST, CIFAR10, etc)

• K = 1000 classes (ImageNet)

Assume balanced dataset where each class has n training samples

• If not, we can use data augmentation to make them balanced
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Looking Inside: Neural Collapse in the Multiple Manifold Problem

Deep Neural Network Classifiers I
A deep neural network classifier often contains two parts: a feature
mapping and a linear classifier

• Output: f(x;θ) = Wφθ′(x) + b with θ = (θ′,W , b).

• Training problem:

min
θ′,W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Wφθ′(xk,i) + b,yk

)
︸ ︷︷ ︸

cross-entropy (CE) loss

+λ ‖(θ′,W , b)‖2F︸ ︷︷ ︸
weight decay

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 42 / 85



Looking Inside: Neural Collapse in the Multiple Manifold Problem

Deep Neural Network Classifiers II
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Neural Collapse in Classification I

• Reveals common outcome of learned features and classifiers across a
variety of architectures and dataset

• Precise mathematical structure within the features and classifier
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Neural Collapse in Classification II

Neural Collapse (NC) refers to

• NC1: Within-Class Variability Collapse: features of each class collapse
to class-mean with zero variability (low-dimensional features):

k-th class, i-th sample : hk,i → hk,
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Neural Collapse in Classification III

Neural Collapse (NC) refers to

• NC2: Convergence to Simplex Equiangular Tight Frame (ETF): the
class means are linearly separable, have same length, and maximal
angle between each other

〈hk,hk′〉
‖hk‖‖hk′‖

→
{

1, k = k′

− 1
K−1 , k 6= k′

• If K vectors have equal angle between each other, then the largest
possible cosine angle between each pair is − 1

K−1 .
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Neural Collapse in Classification IV

Neural Collapse (NC) refers to

• NC3: Convergence to Self-Duality: the last-layer classifiers are
perfectly matched with the class-means of features

wk

‖wk‖ →
hk

‖hk‖
,

where wk represents the k-th row of W .
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Neural Collapse in Classification V

NC is preferred among every successful exercise in feature engineering
[Papyan et al.’20]

• Information Theory: Simplex ETF is the optimal Shannon code

• Classification: Simple ETF features ⇒ Simplex ETF max-margin
classifier

Q: Why iterative training algorithm learns low-dimensional NC features
and classifiers?

A: We will use tools developed in nonconvex optimization in Lecture 3 to
understand NC phenomenon
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Simplification: Unconstrained Features I

Training problem is highly nonconvex [Li et al.’18]:

min
θ′,W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Wφθ′(xk,i) + b,yk

)
+ λ‖(θ′,W , b)‖2F

• Neural Tangent Kernel focuses on output, and thus hardly provides
much insights about features

• Neural Collapse is about the classifier W and the features φθ′(xk,i)
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Simplification: Unconstrained Features II

• Neural Collapse is about the classifier W and the features φθ′(xk,i)

• To understand NC, we treat the features hk,i = φθ′(xk,i) as free
optimization variables (unconstrained features model [Mixon et al.’21])

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i + b,yk

)
+ λ‖({hk,i},W , b)‖2F
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Simplification: Unconstrained Features III

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i + b,yk

)
+ λ‖({hk,i},W , b)‖2F

• Validity: Modern networks are highly over-parameterized, that can
approximate any point in the feature space
• Also called layer-peeled model and has been studied recently to

understand NC
• We will show such simplification preserves the core properties of

last-layer classifiers and features—the NC phenomenon
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Learned low-dimensional features—NC phenomena

Simplification: Unconstrained Features IV

[Lu et al.’20] study the following one-example-per class model

min
{hk}

1

K

K∑

k=1

LCE

(
hk,yk

)
, s.t.‖hk,i‖2 = 1

[E et al.’20, Fang et al.’21, Gral et al.’21, etc.] study constrained formulation

min
{hk},W

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i,yk

)
, s.t. ‖W ‖F ≤ 1, ‖hk,i‖2 ≤ 1

These work show that any global solution has NC, but

• What about local minima/saddle points?

• The constrained formulations are not aligned with practice
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model I

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i + b,yk

)
+ λ‖({hk,i},W , b)‖2F

• Closely related to the matrix factorization problem in Lecture 3:
bilinear form Whk,i

• We will study its global/local minima and saddle points
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model II

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i + b,yk

)
+ λ‖({hk,i},W , b)‖2F

Theorem (global optimality) [Zhu et al. 2021] Let feature dim.
d ≥ #class K − 1. Then any global solution ({h?k,i,W ?, b?}) must
satisfy NC: b? = 0 and

h?k,i = h
?
k︸ ︷︷ ︸

NC1

,
〈h?k,h

?
k′〉

‖h?k‖‖h
?
k′‖

=

{
1, k = k′

− 1
K−1 , k 6= k′

︸ ︷︷ ︸
NC2

,
wk?

‖wk?‖ =
h
?
k

‖h?k‖︸ ︷︷ ︸
NC3

• d ≥ K − 1 is required to make K class-mean features equal angle and
with cosine angle − 1

K−1 (the largest possible) between each pair.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model III

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i + b,yk

)
+ λ‖({hk,i},W , b)‖2F

Theorem (benign global landscape) [Zhu et al. 2021] Let feature
dim. d > #class K. Then the above objective function (i) has no
spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature. Conjecture: d ≥ K − 1 is sufficient.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model IV

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i + b,yk

)
+λ‖({hk,i},W , b)‖2F (NVX)

Theorem (benign global landscape) [Zhu et al. 2021] Let feature
dim. d > #class K. Then the above objective function (i) has no
spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature.

• Proof idea: let zk,i = Whk,i. Then (NVX) is equivalent to the
following convex problem [Haeffele & Vidal’15, Li et al.’17, Ciliberto et al.’17]

min
Z,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
zk,i + b,yk

)
+ λ‖Z‖∗ + λ‖b‖22 (CVX)

where ‖ · ‖∗ is the nuclear norm (sum of singular values).
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model V

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i + b,yk

)
+λ‖({hk,i},W , b)‖2F (NVX)

min
Z,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
zk,i + b,yk

)
+ λ‖Z‖∗ + λ‖b‖22 (CVX)

• Step 1: (NVX) and (CVX) have the ”same” global solutions: if
(H?,W ?, b?) is a global solution of (NVX), then (W ?H?, b?) is a
global solution of (CVX); vice versa.

variational form ‖Z‖∗ = min
Z=WH

1

2
(‖W ‖2F + ‖H‖2F )
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model VI

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i + b,yk

)
+λ‖({hk,i},W , b)‖2F (NVX)

min
Z,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
zk,i + b,yk

)
+ λ‖Z‖∗ + λ‖b‖22 (CVX)

• Step 2: if (H,W , b) is a critical point but not a global min of (NVX)
• (Z, b) with Z = WH is not a critical point to (CVX)
• (Z, b) does not satisfy the first-order optimality condition of (CVX)
• Exploiting this, we show the Hessian at (H,W , b) has a negative

eigenvalue, i.e., it is a strict saddle of (NVX)
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model VII

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i + b,yk

)
+λ‖({hk,i},W , b)‖2F (NVX)

min
Z,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
zk,i + b,yk

)
+ λ‖Z‖∗ + λ‖b‖22 (CVX)

• Step 1: (NVX) and (CVX) have the ”same” global solutions.

• Step 2: if (H,W , b) is a critical point but not a global min of (NVX)
• the Hessian at (H,W , b) has a negative eigenvalue, i.e., it is a strict

saddle

• Step 2 holds for any non-global critical point ⇒ (NVX) has benign
global landscape (no spurious local minima & strict saddle function)

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 59 / 85



Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Geometric Analysis for Unconstrained Features Model VIII

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

LCE

(
Whk,i + b,yk

)
+ λ‖({hk,i},W , b)‖2F

Theorem (global optimality & benign global landscape) Let fea-
ture dim. d > #class K.

• Any global solution ({h?k,i,W ?, b?}) obeys Neural Collapse.

• The objective function (i) has no spurious local minima, and
(ii) any non-global critical point is a strict saddle with
negative curvature.

Message. Iterative algorithms such as (stochastic) gradient
descent always learns Neural Collapse features and classifiers.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Experiments on Practical Neural Networks
Conduct experiments with practical networks to verify our findings on
Unconstrained Features Model

Use a Residual Neural Network
(ResNet) on CIFAR-10 Dataset:

• K = 10 classes

• 50K training images

• 10K testing images
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Experiments: NC is algorithm independent

ResNet18 on CIFAR-10 with different training algorithms

• The smaller the quantities, the severer NC

• NC across different training algorithms
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Geometric analysis for understanding neural collapse

Experiments: NC Occurs on Random Labels/Inputs
CIFAR-10 with random labels, multi-layer perceptron (MLP) with varying
network widths

• Validity of unconstrained features model: Learn NC last-layer
features and classifiers for any inputs

• The network memorizes training data in a very special way: NC

• We observe similar results on random inputs (random pixels)
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for improving training efficiency

Exploit NC

Experiments in [Papyan, Han Donoho] shows NC leads to better

• Generalization performance

• Robustness

We can also exploit NC for

• Improving training efficiency & memory cost (covered later)

• Understanding the effect of loss functions (covered later)

• Understanding transferability

• etc.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for improving training efficiency

Exploit NC for Improving Training & Memory I

NC is prevalent, and classifier always converges to a Simplex ETF

• Implication 1: No need to learn the
classifier [Hoffer et al. 2018]
• Just fix it as a Simplex ETF
• Save 8%, 12%, and 53% parameters for

ResNet50, DenseNet169, and ShuffleNet!

• Implication 2: No need of large feature
dimension d
• Just use feature dim. d = #class K (e.g.,
d = 10 for CIFAR-10)

• Further saves 21% and 4.5% parameters for
ResNet18 and ResNet50!
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for improving training efficiency

Exploit NC for Improving Training & Memory II

ResNet50 on CIFAR-10 with different settings

• Learned classifier (default) VS fixed classifier as a simplex ETF

• Feature dim d = 2048 (default) VS d = 10

• Training with small dimensional features and fixed classifiers achieves
on-par performance with large dimensional features and learned
classifiers.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for understanding the effect of loss functions

Is Cross-entropy Loss Essential?

Is cross-entropy loss essential to neural collapse?

We can measure the mismatch between the network output and the
one-hot label in many ways.

Various losses and tricks (e.g., label smoothing, focal loss) have been
proposed to improve network training and performance1

1He et al., Bag of tricks for image classification with convolutional neural networks,
CVPR’19.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for understanding the effect of loss functions

Focal Loss (FL)

Focal loss puts more focus on hard, misclassified examples2

2Lin et al., Focal Loss for Dense Object Detection, CVPR’18.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for understanding the effect of loss functions

Label Smoothing (LS)
Label smoothing replaces the hard label by a soft label 3

3Szegedy et al., Rethinking the inception architecture for computer vision, CVPR’16.
Muller, Kornblith, Hinton, When does label smoothing help?, NeurIPS’19.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for understanding the effect of loss functions

Mean-squared Error (MSE) Loss?

Compared with CE, (rescaled) MSE loss produces on par/slightly worse
results for computer vision tasks and on par/slightly better results for NLP
tasks.4

4Hui & Belkin, Evaluation of neural architectures trained with square loss vs cross-entropy in
classification tasks, ICLR 2021.
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for understanding the effect of loss functions

Are All Loses Created Equal?—A NC Perspective I

Do all these losses make difference?

We study them under the unconstrained feature model:

min
{hk,i},W ,b

1

Kn

K∑

k=1

n∑

i=1

L
(
Whk,i + b,yk

)
+ λ‖({hk,i},W , b)‖2F

Theorem (informal) [Zhou et al.’22] With feature dim. d >
#class K, all the one-hot labeling based losses (e.g., CE, FL, LS,
MSE) lead to (almost) the same NC features and classifiers [Han et

al’21, Tirer & Bruner’22, Zhou’22].
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for understanding the effect of loss functions

Are All Loses Created Equal?—A NC Perspective II

Theorem (informal) [Zhou et al.’22] With feature dim. d >
#class K, all the one-hot labeling based losses (e.g., CE, FL, LS,
MSE) lead to (almost) the same NC features and classifiers [Han et

al’21, Tirer & Bruner’22, Zhou’22].

Implication If network is large enough and trained longer enough

• All losses lead to largely identical features on training
data—NC phenomena

• All losses lead to largely identical performance on test data
(experiments in the following slides)
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for understanding the effect of loss functions

Are All Loses Created Equal?—A NC Perspective III

ResNet50 on CIFAR-10 with different training losses

• The smaller the quantities, the severer NC

• NC across different training losses
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for understanding the effect of loss functions

Are All Loses Created Equal?—A NC Perspective IV

ResNet50 on CIFAR-10 with different training losses

• All losses lead to largely identical performance on training, validation,
and test data
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Looking Inside: Neural Collapse in the Multiple Manifold Problem Exploit NC for understanding the effect of loss functions

Are All Loses Created Equal?—A NC Perspective V

ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

• If network is large enough and trained longer enough, all losses lead
to largely identical performance on test data
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Exploit Sparse Model for Robust training

NC → Overfitting to Corruptions!
Label noise is common and often unavoidable

• Some proportion of the labels
are incorrect (5-80%?)

• We don’t know which labels are
correct/incorrect

NC always happens

• Perfectly fits noisy labels
(ovefitting)

• Can’t predict well on new
images
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Exploit Sparse Model for Robust training

Prior Work on Robust Deep Learning for Noisy Labels

Various (heuristic or principled) methods have been proposed5

5Song et al., Learning from noisy labels with deep neural networks: A survey, IEEE TNNLS,
2022.
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Exploit Sparse Model for Robust training

A Sparse Over-Parameterization (SOP) Method

We model the label noise and (hopefully) correct it. Only a fraction of the
labels are corrupted (sparse), and the corruption in each label is also sparse

Lecture 1 introduced principled methods for dealing with sparse corruption
in compressive sensing, robust PCA6

6Candes & Tao, Decoding by linear programming, TIT 2005.
Wright et al., Robust face recognition via sparse representation, TPAMI, 2008.
Candes et al., Robust principal component analysis? JACM, 2011.
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Exploit Sparse Model for Robust training

A Sparse Over-Parameterization (SOP) Method

Our approach:7 minimize the distance between y and f(θ;x) + s

min
θ,ui,vi

1

N

N∑

i=1

LCE

(
f(xi;θ) + ui � ui − vi � vi︸ ︷︷ ︸

over-parameterize sito promote sparsity

,yi)

Here the over-parameterization ui � ui − vi � vi introduces implicit
algorithmic regularization [Vaskevicius et al.’19, Zhao et al.’19]

variational form ‖s‖1 = min
s=u�u−v�v

1

2
(‖u‖2 + ‖v‖2)

7Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML’22.
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Exploit Sparse Model for Robust training

A Sparse Over-Parameterization (SOP) Method
Our approach:7 minimize the distance between y and f(θ;x) + s

min
θ,ui,vi

1

N

N∑

i=1

LCE

(
f(xi;θ) + ui � ui − vi � vi︸ ︷︷ ︸

over-parameterize sito promote sparsity

,yi)

Here the over-parameterization ui � ui − vi � vi introduces implicit
algorithmic regularization [Vaskevicius et al.’19, Zhao et al.’19]

variational form ‖s‖1 = min
s=u�u−v�v

1

2
(‖u‖2 + ‖v‖2)

Why not use explicit regularization?

min
θ,{si}

1

N

N∑

i=1

LCE

(
f(xi;Θ) + si,yi)︸ ︷︷ ︸

→0

+λ‖si‖1︸ ︷︷ ︸
→0

7Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML’22.
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Exploit Sparse Model for Robust training

A Sparse Over-Parameterization (SOP) Method

A simple model: assume f(x;θ) is a scalar function and can be
approximated by first-order Taylor expansion

f(x;θ) ≈ f(x;θ0) + 〈∇f(x;θ0),θ − θ0〉

WLOG, assume f(x;θ0) + 〈∇f(x;θ0),θ0〉 = 0. For N training samples,



f(x1;θ)

...
f(xN ;θ)


 ≈



∇f(x1;θ0)

>

...
∇f(xN ;θ0)

>


θ = J · θ

This leads to the following corrupted observation problem

y = J · θ? + s?

where θ? is the underlying groundtruth parameter, and s? is sparse.

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 80 / 85



Exploit Sparse Model for Robust training

A Sparse Over-Parameterization (SOP) Method

A simple model: assume f(x;θ) is a scalar function and can be
approximated by first-order Taylor expansion

f(x;θ) ≈ f(x;θ0) + 〈∇f(x;θ0),θ − θ0〉

WLOG, assume f(x;θ0) + 〈∇f(x;θ0),θ0〉 = 0. For N training samples,



f(x1;θ)

...
f(xN ;θ)


 ≈



∇f(x1;θ0)

>

...
∇f(xN ;θ0)

>


θ = J · θ

This leads to the following corrupted observation problem

y = J · θ? + s?

where θ? is the underlying groundtruth parameter, and s? is sparse.

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 80 / 85



Exploit Sparse Model for Robust training

A Sparse Over-Parameterization (SOP) Method

A simple model: assume f(x;θ) is a scalar function and can be
approximated by first-order Taylor expansion

f(x;θ) ≈ f(x;θ0) + 〈∇f(x;θ0),θ − θ0〉

WLOG, assume f(x;θ0) + 〈∇f(x;θ0),θ0〉 = 0. For N training samples,



f(x1;θ)

...
f(xN ;θ)


 ≈



∇f(x1;θ0)

>

...
∇f(xN ;θ0)

>


θ = J · θ

This leads to the following corrupted observation problem

y = J · θ? + s?

where θ? is the underlying groundtruth parameter, and s? is sparse.

Sam Buchanan & Zhihui Zhu Low-Dim Structures via Deep Networks May 26, 2022 80 / 85



Exploit Sparse Model for Robust training

A Sparse Over-Parameterization (SOP) Method
We over-parameterize the sparse noise by u� u− v � v and solve

min
θ,u,v

g(θ,u,v) =
1

2
‖J · θ + u� u− v � v − y‖22

using gradient descent with discrepant learning rates

θt+1 = θt − µ∇θg(θt,ut,vt)[
ut+1

vt+1

]
=

[
ut
vt

]
− αµ

[
∇ug(θt,ut,vt)
∇vg(θt,ut,vt)

]

Theorem (informal) If gradient descent with infinitesimallly small
initialization and step size µ converges to (θ̂, û, v̂), then (θ̂, û� û−
v̂ � v̂) is an optimal solution to the following convex problem

min
θ,s

1

2
‖θ‖22 +

1

α
‖s‖1, s.t. y = J · θ + s

Exactly recover (θ?, s?) when J is incoherent [Candes & Tao’05].
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Exploit Sparse Model for Robust training

A Sparse Over-Parameterization (SOP) Method

{0%, 20%, 40%} percent of labels for CIFAR-10 training data are randomly
flipped uniformly to another class. Use ResNet34.

SOP trains a deep image classification networks without overfitting to
wrong labels and obtain better generalization performance
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Exploit Sparse Model for Robust training

SOP on CIFAR-10 with human annotated noisy labels

CIFAR-10N: provide CIFAR-10 with human annotated noisy labels8

• Annotated by 747 independent workers

• Provide 5 noisy label sets for CIFAR-10
train images:

• Random i = 1, 2, 3: the i-th submitted
label for each image;

• Aggregate: aggregation of three noisy
labels by majority voting

• Worst: label set with the highest noise rate

8
Wei et al., Learning with noisy labels revisited: A study using real-world human annotations, ICLR 2022.
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Exploit Sparse Model for Robust training

SOP on CIFAR-10 with human annotated noisy labels

Sparse modeling gives super performance again label noise9

9
Wei et al., Learning with noisy labels revisited: A study using real-world human annotations, ICLR 2022.

Liu, Zhu, Qu, You, Robust Training under Label Noise by Over-parameterization, ICML’22.
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Conclusion and Coming Attractions

Learning common deep networks for low-dim structure

• Low-dimensional data: understand resource tradeoffs between data
structure and network architecture

• Low-dimensional features: understand low-dim. features (NC)
learned in deep classifiers trained with one-hot labeling based losses

• Robust training: Exploit low-dim structure in the label noise to
improve training robustness

Next lecture: New approach for learning diverse and discriminative
features (beyond NC).
Designing deep network architectures for low-dimensional structures

Thank You! Questions?



Looking Inside: Neural Collapse in the Multiple Manifold Problem

Figure Credits I

• Slide 3: Dictionary learning figures from [Mairal, Elad, and Sapiro
2008]

• Slide 4: ImageNet classes from paperswithcode.com; AlexNet
architecture: [Krizhevsky et al. 2012]; ResNet architecture: [He et al.
2015];

• Slide 5: ImageNet top1 from paperswithcode.com; DALL-E 1 and 2
from https://openai.com/blog/dall-e/ and
https://openai.com/dall-e-2/

• Slide 7: Right image from
https://www.cityscapes-dataset.com/dataset-overview/

• Slide 8: Hairbrushes from https://objectnet.dev/download.html

• Slide 9: Illumination figure from [Basri and Jacobs 2003]

• Slide 13: Left figure from [Krizhevsky et al. 2012]; right from
https://openai.com/blog/microscope/;
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