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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Low-rank Matrix Completion

We observe:

Y
Observed ratings

= PΩ
[

X
Complete ratings

]
.

Matrix completion
via bilinear low-rank factorization

min
U ,V

f(U ,V ) =
∑

(i,j)∈Ω

[(UV ∗)i,j − Yi,j ]
2 +

λ

2
∥U∥2F +

λ

2
∥V ∥2F︸ ︷︷ ︸

reg(U ,V )

.

∥M∥∗ = min
M=UV ∗

λ
2∥U∥2F + λ

2∥V ∥2F
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Dictionary for Image Representation

Image processing
(e.g. denoising or super-resolution)
against a known sparsifying dictionary:

Inoisy = A
dictionary

× x
sparse

+ z.
noise

(1)

Dictionary learning: the motifs or atoms of the dictionary are unknown:

Y
data

= A
dictionary

X.
sparse

(2)

• Band-limited signals: A = F , the Fourier transform;

• Piecewise smooth signals: A = W , the wavelet transforms;

• Natural images A =? (How to learn A from the data Y ?)
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Convex and Nonconvex Optimization
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Dictionary Learning

Recovered solutions always obtain the same objective value.
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Benign Nonconvex Optimization Landscape

General Case Structured Case

Yuqian Zhang Nonconvex Optimization Methods May 25, 2022 6 / 52



Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Sparse Blind Deconvolution

Observation Kernel A0 Natural Image 

Observation Y Kernel A0 Activation Map X0

Sparse Blind Deconvolution:
the convolutional motif or sparse
activation signal are unknown:

Y
data

= A
motif

∗ X.
sparse

(3)

• Scientific signals:
activation signals are sparse

• Image deblurring:
natural images are
sparse in the gradient domain
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Sparse Blind Deconvolution

Recovered solutions are near signed shift-truncations of the ground
truth.
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Convoltional Dictionary learning

Y
data

=
∑
i

Ai
motif

∗ Xi.
sparse

Recovered solutions are near signed shift-truncations of the ground
truth.
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Challenges of Nonconvex Optimization – Pessimistic Views

Consider the problem of minimizing
a general nonlinear function:

min
z

φ(z), z ∈ C. (4)

In the worst case, even finding
a local minimizer can be NP-hard1.

Hence typically people
seek to work with relatively benign
functions with benign guarantees:

1 convergence to some critical point z̄ such that ∇φ(z̄) = 0;

2 or convergence to some local minimizer ∇2φ(z̄) ⪰ 0.

1Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Opportunities – Optimistic Views

However, nonconvex
problems that arise from
natural physical, geometrical,
or statistical origins typically
have nice structures,
in terms of symmetries!

The function φ is invariant
under certain group action:

• for low rank matrix recovery, invariant under a continuous rotation:

φ((UΓ,V Γ−1)) = φ((U ,V )), ∀ invertible Γ.

• for dictionary learning, invariant under signed permutations:

φ((A,X)) = φ((AΠ,Π∗X)), ∀Π ∈ SP(n).
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Nonlinearity and Symmetry

Intrinsic ambiguity against the uniqueness of the solution

• low rank matrix recovery

X = U0V
T
0 = U0ΓΓ

−1V T
0

for any invertible Γ.

• dictionary learning

Y = A0X0 = A0ΠΠ∗X0

for any signed permutation Π.

• blind deconvolution

y = a0 ∗ x0 = Sτ [a0] ∗ S−τ [x0]

for any signed shift τ .
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Optimization under Symmetry

Definition (Symmetric Function)

Let G be a group acting on Rn. A function φ : Rn → Rn′
is G-symmetric

if for all z ∈ Rn, g ∈ G, φ(g ◦ z) = φ(z).

Most symmetric objective functions that
arise in structure signal recovery do not
have spurious local minimizers or flat
saddles.

Slogan 1: the (only!) local minimizers are symmetric versions of
the ground truth.
Slogan 2: any local critical point has negative curvature in direc-
tions that break symmetry.
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Basic Calculus

Critical points or stationary points: gradient vanishes

• convex function: critical point = minimizer

• nonconvex function: not all critical point are minimizer
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Basic Calculus

Critical points with non-singular hessian

• minimizer: hessian is positive definite

• saddle points: hessian has both positive and negative eigenvalues

• maximizer: hessian is negative definite

Yuqian Zhang Nonconvex Optimization Methods May 25, 2022 15 / 52



Outline

1 Introduction & Motivation of Nonconvex Optimization
Motivating Examples
Nonlinearality, Nonconvexity, and Symmetry

2 Symmetry & Geometry for Nonconvex Problems in Practice
Problems with Rotational Symmetry
Problems with Discrete Symmetry

3 Efficient Nonconvex Optimization
Objectives of Nonconvex Optimization
Escaping Saddles



Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Problems with Rotational Symmetry
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low rank matrix recovery
Goal: Given Y = A(X), recover low rank matrix X = U0V0

• Convex Formulation

min
X∈Rm×n

∥X∥⋆ s.t. Y = A(X)

• Nonconvex Formulation

min
U∈Rm×r,V ∈Rn×r

∥∥Y −A(UV T )
∥∥2
F
+ reg(U ,V )
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

min
U ,V

1

2

∥∥Y −A(UV T )
∥∥2
F
+ reg(U ,V )

Inherent Symmetry:

X = U0V
T
0 = U0ΓΓ

−1V T
0

for any invertible Γ ∈ Rr×r.

• Are
(
U0Γ,V0Γ

−1
)
the only local solutions?

• Does there exist flat stationary points?
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Rank-1 Symmetric Matrix

Simplifications:

• Y = A(X) = X

• X = U0U
T
0 is symmetric and rank-1

X = u0u
T
0 = (−u0)(−uT

0 )

the rotational symmetry is reduced to sign symmetry.

Nonconvex formulation:

min
u

ϕ(u)
.
=

1

4

∥∥X − uuT
∥∥2
F
+ λ ∥u∥22︸ ︷︷ ︸

const
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Rank-1 Symmetric Matrix

min
u

ϕ(u)
.
=

1

4

∥∥X − uuT
∥∥2
F

Critical points have zero gradient

∇ϕ = (uuT −X)u

= ∥u∥22 u−Xu

= 0

therefore critical points must be one of the following

• u = ±u0

• u = 0
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Rank-1 Symmetric Matrix

min
u

ϕ(u)
.
=

1

4

∥∥X − uuT
∥∥2
F

with the second order derivative

∇2ϕ = 2uuT + ∥u∥22 I −X.

Then the critical points can be grouped as

• Local minimizer u = ±u0 and uuT = X

∇2ϕ = uuT + ∥u∥22 I.

• Maximizer u = 0

∇2ϕ = −X.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

Symmetric low rank matrix

min
U

ϕ(u)
.
=

1

4

∥∥X −UUT
∥∥2
F
.

General low rank matrix recover

min
U ,V

ϕ(u)
.
=

1

2

∥∥X −UV T
∥∥2
F
+ λ ∥U∥2F + λ ∥V ∥2F .

Local minimizers: are ground truth U0 and V0 up to rotation;
Negative curvature: between multiple local minimizers.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Problems with Discrete Symmetry
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Dictionary Learning
Goal: Given dataset Y , find the optimal dictionary A that renders the
sparsest coefficient X

min
A,X

∥X∥1 s.t. Y = AX.

In presence of noise, the optimization problem can be rewritten as

min
A,X

1

2
∥Y −AX∥2F + λ ∥X∥1 .

Inherent Symmetry:

Y = A0ΓΓ
∗X0,

for any signed permutation matrix Γ.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning
• Input: matrix Y which is the product of an orthogonal matrix A0

(called a dictionary) and a sparse matrix X0:

Y = A0X0, A0A
∗
0 = I,X0 sparse.

• Optimization Formulation

min
A,X

∥X∥1 s.t. Y = AX, AA∗ = I.

• Given the optimization constraint, X is uniquely defined in terms of
A

X = A∗AX = A∗Y .

• Equivalent formulation

min
A∈O(n)

∥A∗Y ∥1 .
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning

Instead of aiming to solve the entire matrix A = [a1, . . . ,an] at once via

min
A∈O(n)

∥A∗Y ∥1 .

A simpler model problem solves for the columns ai one at a time

min
∥a∥2=1

∥a∗Y ∥1 .

More simplifications:

• orthogonal dictionary A0 = I;

• sparse coefficients X0 = I

min
∥a∥2=1

∥a∥1 .
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning

min
∥a∥2=1

∥a∥1 .

To obtain the second order information for stationary points, we use a
smoothed ℓ1 penalty — Huber loss

hλ(x) =

{
λ|x| − λ2/2 |x| > λ,

x2/2 |x| ≤ λ.

min
∥a∥2=1

ϕ(a)
.
= hλ(a).
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning — Calculus

min
∥a∥2=1

ϕ(a) = hλ(a),

hλ(ai) =

{
λ|ai| − λ2/2 |ai| > λ,

a2i /2 |ai| ≤ λ.

The Euclidean gradient

∇ϕ = λsign(a) ◦ 1|a|>λ + a ◦ 1|a|≤λ.

With the sphere constraint, a critical point satisfies ∇ϕ = 0 or ∇ϕ ∝ a.

a ∝ sign(a).
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning — Calculus

Recall that

∇ϕ = λsign(a) ◦ 1|a|>λ + a ◦ 1|a|≤λ

has first-order critical points a ∝ sign(a). Denote I = supp(a), then the
Riemannian Hessian over the sphere follows

Hess[ϕ] = Pa⊥

 ∇2ϕ︸︷︷︸
curvature of ϕ

− ⟨∇ϕ,a⟩ I︸ ︷︷ ︸
curvature of the sphere

Pa⊥

= Pa⊥ [D1|a|≤λ
− λ |I| I]Pa⊥

with Pa⊥ = I − aaT . The Hessian exhibits |I| − 1 negative eigenvalues
and n− |I| positive eigenvalues.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning — Calculus

• a = ±ei, then the Hessian is positive definite

Hess[ϕ] = Pa⊥ [(1− λ)I − λDei ]Pa⊥ = Pa⊥ [(1− λ)I]Pa⊥

with Pa⊥ = I − eie
T
i = I −Dei ;

• a =
∑

i∈I ± 1√
|I|
ei, there exist negative curvatures alone ei(i ∈ I)

Hess[ϕ] = Pa⊥

[
(1− λ |I|)D1|a|≤λ

− λ |I|D1|a|>λ

]
Pa⊥ .

• a =
∑

i∈[n]± 1√
n
ei, then |I| = n and the Hessian is negative definite.

Hess[ϕ] = Pa⊥ [−λnI]Pa⊥

with Pa⊥ = I − aaT = (1− 1/n)I.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning — Geometry

Local minimizers are ground truth ei or −ei.
Negative curvature between multiple local minimizers.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Short-and-Sparse Blind Deconvolution

Goal: Given convolutional data y, find the short signal a and the sparse
signal x such that y = a ∗ x.

Inherent Symmetry:

y = a0 ∗ x0 = αsl[a0] ∗
1

α
s−l[x0]

for any shift l and nonzero scaling.

The practical optimization problem can be written as

min
∥a∥2F=1,x

1
2 ∥y − a ∗ x∥2F + λ ∥x∥1 .
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Objective Function – Near One Shift

Sp−1 ∩ {a ∈ Sp−1 | ∥a− sℓ[a0]∥2 ≤ r}

sℓ[a0]

φρ(a)

Objective function is strongly convex near a shift sℓ[a0] of the ground
truth.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Objective Function – Linear Span of Two Shifts

sℓ2 [a0]

sℓ1 [a0]

S{ℓ1,ℓ2}

Subspace S{ℓ1,ℓ2} = {αℓ1sℓ1 [a0] + αℓ2sℓ2 [a0] | αℓ1 , αℓ2 ∈ R}.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Objective Function – Linear Span of Two Shifts

sℓ2 [a0]

sℓ1 [a0]

S{ℓ1,ℓ2}

S{ℓ1,ℓ2} ∩ Sp−1

φρ(a)

Local minimizers are near signed shifts ±sℓ[a0].
Negative curvature between two shifts sℓ1 [a0], sℓ2 [a0].
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Objective Function – Multiple Shifts

S{ℓ1,ℓ2,ℓ3} ∩ Sp−1

sℓ1 [a0]

sℓ2 [a0]sℓ3 [a0]

φρ(a)

Objective φρ over the linear span Sℓ1,ℓ2,ℓ3 = {∑3
i=1 αℓisℓi [a0]}

Local minimizers are near signed shifts ±sℓi [a0].
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Symmetry and Nonconvexity

• the (only!) local minimizers are symmetric versions of the ground
truth.

• there is negative curvature in directions that break symmetry.
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Nonconvex Optimization

Consider the problem of
minimizing a general nonlinear function:

min
x

f(x), x ∈ C. (5)

In the worst case, even finding
a local minimizer can be NP-hard2.

Nonconvex problems that
arise from natural physical, geometrical,
or statistical origins typically have
nice structures, in terms of symmetries!

2Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Objectives
Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions:

∀x,y ∥∇f(y)−∇f(x)∥2 ≤ L1∥y − x∥2 (6)

with benign objectives:

1 convergence to some critical point x⋆ such that: ∇f(x⋆) = 0;

2 the critical point x⋆ is second-order stationary: ∇2f(x⋆) ⪰ 0.

Example: in general f could have irregular second-order stationary points:
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Objectives

Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions with benign objectives:

1 convergence to some critical point x⋆ such that: ∇f(x⋆) = 0;

2 the critical point x⋆ is second-order stationary: ∇2f(x⋆) ⪰ 0.

Example: a function φ with symmetry only has regular critical points:

Yuqian Zhang Nonconvex Optimization Methods May 25, 2022 40 / 52



Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

“Any Reasonable Algorithm” Works

Key issue: using negative curvature
λmin(Hessf) < 0

to escape saddles.
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Efficient (polynomial time) methods:
Trust region method, analyses in [Sun, Qu, W., ’17]
Curvilinear search, [Goldfarb, Mu, W., Zhou, ’16]

Noisy (stochastic) gradient descent, [Jin et. al. ’17].

Randomly initialized gradient descent ....
Obtains a minimizer almost surely [Lee et. al. ’16].

Efficient for matrix completion, dictionary learning, . . . not efficient in general.
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Worst Case vs. Naturally Occurring Strict Saddle Functions
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(a) Contour plot of the objective
function and tube defined in 2D.

(b) Trajectory of gradient descent
in the tube for d = 3.

(c) Octopus defined in 2D.

Figure 2: Graphical illustrations of our counter-example with ⌧ = e. The blue points are saddle
points and the red point is the minimum. The pink line is the trajectory of gradient descent.
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Figure 3: Performance of GD and PGD on our counter-example with d = 5.

0 1000 2000

Epochs

-800

-600

-400

-200

0

200

O
b
je

ct
iv

e
 F

u
n
ct

io
n

GD
PGD

(a) L = 1, � = 1

0 1000 2000

Epochs

-1000

-500

0

500

O
b
je

ct
iv

e
 F

u
n
ct

io
n

GD
PGD

(b) L = 1.5, � = 1

0 1000 2000

Epochs

-1500

-1000

-500

0

500

O
b
je

ct
iv

e
 F

u
n
ct

io
n

GD
PGD

(c) L = 2, � = 1

0 1000 2000

Epochs

-1500

-1000

-500

0

500

O
b
je

ct
iv

e
 F

u
n
ct

io
n

GD
PGD

(d) L = 3, � = 1

Figure 4: Performance of GD and PGD on our counter-example with d = 10

Extension: from octopus to Rd. Up to now we have constructed a function defined on a closed
subset of Rd. The last step is to extend this function to the entire Euclidean space. Here we apply the
classical Whitney Extension Theorem (Theorem B.3) to finish our construction. We remark that the
Whitney extension may lead to more stationary points. However, we will demonstrate in the proof
that GD and PGD stay within the interior of “octopus” defined above, and hence cannot converge to
any other stationary point.

5 Experiments

In this section we use simulations to verify our theoretical findings. The objective function is defined
in (14) and (15) in the Appendix. In Figures 3 and Figure 4, GD stands for gradient descent and
PGD stands for Algorithm 1. For both GD and PGD we let the stepsize ⌘ = 1

4L . For PGD, we
choose tthres = 1, gthres = �e

100 and r = e
100 . In Figure 3 we fix dimension d = 5 and vary L as

considered in Section 4.1; similarly in Figure 4 we choose d = 10 and vary L. First notice that in
all experiments, PGD converges faster than GD as suggested by our theorems. Second, observe the
“horizontal" segment in each plot represents the number of iterations to escape a saddle point. For
GD the length of the segment grows at a fixed rate, which coincides with the result mentioned at the
beginning for Section 4.1 (that the number of iterations to escape a saddle point increase at each time
with a multiplicative factor L+�

� ). This phenomenon is also verified in the figures by the fact that as
the ratio L+�

� becomes larger, the rate of growth of the number of iterations to escape increases. On
the other hand, the number of iterations for PGD to escape is approximately constant (⇠ 1

⌘� ).

8

Worst Case
[Du, Jin, Lee, Jordan, Poczos, Singh ’17]
Concentration around stable manifold

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0.18

0.2

0.22

0.24

0.26

0.28

0.3

Naturally Occuring
DL, Other sparsification problems

Dispersion away from stable manifold

Yuqian Zhang Nonconvex Optimization Methods May 25, 2022 42 / 52



Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Worst Case vs. Naturally Occurring Strict Saddle Functions

• Red: “slow region” of
small gradient around a
saddle point.

• Green: stable manifold
associated with the
saddle point.

• Black: points that flow
to the slow region.

• Left: global negative curvature normal to the stable manifold

• Right: positive curvature normal to the stable manifold – randomly
initialized gradient descent is more likely to encounter the slow region.

.
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Gradient Descent Works for DL and Related Problems
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Dispersive structure: Negative curvature ⊥ stable manifolds.

W.h.p. in random initialization q(0) ∼ uni(Sn−1), convergence to a
neighborhood of a minimizer in polynomial iterations. [Gilboa,
Buchanan, W. ’18]
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Alternating Descent Method

min
a∈Sn−1,x

1

2
∥y − a ∗ x∥2F︸ ︷︷ ︸

smooth g

+λ ∥x∥1︸ ︷︷ ︸
nonsmooth h

• Fix a and take a proximal descent step on x

x(k+1) ← proxλth

(
x(k) − t∇g(a(k),x(k))

)
• Fix x and take a projected descent step on a

a(k+1) ← PSn−1

(
a(k) − t′gradg(a

(k),x(k))
)
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Inertial Alternating Descent Method

Accelerating first-order descent with Momentum

• Fix a and take an accelerated proximal descent step on x

w(k) = x(k) + β
(
x(k) − x(k−1)

)
x(k+1) ← proxλth

(
x(k) − t∇g(a(k),w(k))

)
• Fix x and take an accelerated projected descent step on a

z(k) = a(k) + β
(
a(k) − a(k−1)

)
a(k+1) ← PSn−1

(
a(k) − t′gradg(z

(k),x(k))
)
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Convergence Comparison
For blind deconvolution problem

min
a∈Sn−1,x

1

2
∥y − a ∗ x∥2F + λ ∥x∥1

3
3The homotopy counterpart shrinks λ in every iteration.
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Efficient Nonconvex Optimization Escaping Saddles

Escaping Saddles in Worst Case Problems
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(a) Contour plot of the objective
function and tube defined in 2D.

(b) Trajectory of gradient descent
in the tube for d = 3.

(c) Octopus defined in 2D.

Figure 2: Graphical illustrations of our counter-example with ⌧ = e. The blue points are saddle
points and the red point is the minimum. The pink line is the trajectory of gradient descent.
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Figure 3: Performance of GD and PGD on our counter-example with d = 5.

0 1000 2000

Epochs

-800

-600

-400

-200

0

200

O
b
je

ct
iv

e
 F

u
n
ct

io
n

GD
PGD

(a) L = 1, � = 1

0 1000 2000

Epochs

-1000

-500

0

500

O
b
je

ct
iv

e
 F

u
n
ct

io
n

GD
PGD

(b) L = 1.5, � = 1

0 1000 2000

Epochs

-1500

-1000

-500

0

500

O
b
je

ct
iv

e
 F

u
n
ct

io
n

GD
PGD

(c) L = 2, � = 1

0 1000 2000

Epochs

-1500

-1000

-500

0

500

O
b
je

ct
iv

e
 F

u
n
ct

io
n

GD
PGD

(d) L = 3, � = 1

Figure 4: Performance of GD and PGD on our counter-example with d = 10

Extension: from octopus to Rd. Up to now we have constructed a function defined on a closed
subset of Rd. The last step is to extend this function to the entire Euclidean space. Here we apply the
classical Whitney Extension Theorem (Theorem B.3) to finish our construction. We remark that the
Whitney extension may lead to more stationary points. However, we will demonstrate in the proof
that GD and PGD stay within the interior of “octopus” defined above, and hence cannot converge to
any other stationary point.

5 Experiments

In this section we use simulations to verify our theoretical findings. The objective function is defined
in (14) and (15) in the Appendix. In Figures 3 and Figure 4, GD stands for gradient descent and
PGD stands for Algorithm 1. For both GD and PGD we let the stepsize ⌘ = 1

4L . For PGD, we
choose tthres = 1, gthres = �e

100 and r = e
100 . In Figure 3 we fix dimension d = 5 and vary L as

considered in Section 4.1; similarly in Figure 4 we choose d = 10 and vary L. First notice that in
all experiments, PGD converges faster than GD as suggested by our theorems. Second, observe the
“horizontal" segment in each plot represents the number of iterations to escape a saddle point. For
GD the length of the segment grows at a fixed rate, which coincides with the result mentioned at the
beginning for Section 4.1 (that the number of iterations to escape a saddle point increase at each time
with a multiplicative factor L+�

� ). This phenomenon is also verified in the figures by the fact that as
the ratio L+�

� becomes larger, the rate of growth of the number of iterations to escape increases. On
the other hand, the number of iterations for PGD to escape is approximately constant (⇠ 1

⌘� ).

8

Worst Case
[Du, Jin, Lee, Jordan, Poczos, Singh ’17]
Concentration around stable manifold
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Efficient Nonconvex Optimization Escaping Saddles

Trust Region Method

Function class: f nonconvex.

The oracle: gradient ∇f(x), Hessian ∇2f(x), and the trusted region
radius r

Trust region update:

x(t+1) = x(t) + δ

with

δ = arg min
∥δ∥≤r

f
(
x(t)

)
+
〈
∇f(x(k)), δ

〉
+

1

2
δT∇2f

(
x(k)

)
δ

• At any stationary point, the gradient vanishes, and the above
optimization problem boils down to the Hessian term;

• At an local solution with positive semi-definite Hessian, the above
optimization problem renders δ = 0.
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Efficient Nonconvex Optimization Escaping Saddles

Gradient Descent with Small Random Noise

Function class: f nonconvex and Lips. continuous.

The oracle: gradient ∇f(x) and small random noise.

The updates for noisy gradient descent (Langevine dynamics):

x(k+1) = x(k) − t1∇f(x(k)) + t2n,

This avoids computing expensive Hessian.
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Efficient Nonconvex Optimization Escaping Saddles

Hybrid Noisy Gradient Descent

Function class: f nonconvex and Lips. continuous.

The oracle: gradient ∇f(x) and small noise n.

Hybrid noisy gradient descent:

• if ∥∇f(xk)∥2 ≥ ϵg, then xk+1 = xk − t1∇f(xk);

• else x0
k = xk, and negative curvature descent with noisy gradients:

for i = 0, 1, 2, . . . , kmax = O(log n)

xi+1
k = xi

k − t1∇f(xi
k) + t2n

i,

where ni ∼ N (0, I).

More saddle-escaping first-order optimization methods in book:
Wright and Ma: https://book-wright-ma.github.io.
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Efficient Nonconvex Optimization Escaping Saddles

Conclusion and Coming Attractions

For Nonconvex, Sparse and Low-rank problems

• Benign Geometry:
• The only local minimizers are symmetric copies of the ground truth
• There exist negative curvatures breaking symmetry

• Efficient Algorithms:
• gradient descent algorithms always suffice
• proximal, projection, acceleration steps can be transferred over

Next lecture: Exploiting Low-D Structures via Deep Networks.

Thank You! Questions?
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