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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Low-rank Matrix Completion

We observe: Brsas .. - 53 .5
:® |- 4
L = Pa
Y = Pq X . els7 55 .3
Observed ratings Complete ratings ) Complete Ratings X
Ttems
Observed (Incomplete) Ratings Y

Matrix completion
via bilinear low-rank factorization

. A A
min fU, V)= > [(UV)i; = Yig? + SIUIE + SV
(i,)€Q

reg(U.v)

Ml = min S|U[E+ 3]V IF
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Dictionary for Image Representation

Image processing
(e.g. denoising or super-resolution)
against a known sparsifying dictionary:

Inoisy = A x x + z (1)

dictionary sparse noise
Dictionary learning: the motifs or atoms of the dictionary are unknown:

Yy = A X. (2)
data  dictionary sparse

® Band-limited signals: A = F', the Fourier transform;

® Pjecewise smooth signals: A = W, the wavelet transforms;

e Natural images A =7 (How to learn A from the data Y'?7)
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Convex and Nonconvex Optimization
) =2+

2
fla,y) =Y asin(ba + ay) + dicoslew + fiy)
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Intro n & Motivation of Nonconvex Optimization Motivating Examples

Dictionary Learning

0 10 22 3 4 5 6 70 @ e 100 o

Recovered solutions always obtain the same objective value.

10 2 % 4 S @ 7 8 %0 10

o

10 220 3 40 S e 7 8 % 100
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Benign Nonconvex Optimization Landscape

General Case

=] & = E E DA
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Sparse Blind Deconvolution

Sparse Blind Deconvolution:
the convolutional motif or sparse
activation signal are unknown:

=E*..

Y — A * X ) ( 3) Observation Y Kernel Ao A;li\'laiion Map X'u

data motif sparse

® Scientific signals:
activation signals are sparse

-H -

Observation Kernel Ao

® |mage deblurring:
natural images are
sparse in the gradient domain
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Sparse Blind Deconvolution

Retiadia M

v
EE.
t

Aa omowon

Recovered solutions are near signed shift-truncations of the ground
truth.
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Convoltional Dictionary learning

Y:ZAi x X,

data P motif sparse

o] ©

n.

Recovered solutions are near signed shift-truncations of the ground
truth.
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Challenges of Nonconvex Optimization — Pessimistic Views

%

Spurious local minimizers Flat saddle points

Consider the problem of minimizing
a general nonlinear function:

minp(z), ze€C
z

In the worst case, even finding
a local minimizer can be NP-hard?.

Hence typically people
seek to work with relatively benign
functions with benign guarantees:

@ convergence to some critical point Z such that Vo(z) = 0;

@® or convergence to some local minimizer V2¢(2) = 0.

'Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
T ———



ez el VBmearo i) e Syt
Opportunities — Optimistic Views

However, nonconvex

problems that arise from

natural physical, geometrical,

or statistical origins typically ‘ i
have nice structures, '—.

in terms of symmetries! Rotational symmetry Discrete symmetry

The function ¢ is invariant
under certain group action:

® for low rank matrix recovery, invariant under a continuous rotation:

o((UT,VI™Y) = o((U,V)), Vinvertible T.

e for dictionary learning, invariant under signed permutations:
¢((A, X)) = ¢((AILIT" X)), VIL € SP(n).
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Nonlinearity and Symmetry

Intrinsic ambiguity against the uniqueness of the solution

® |ow rank matrix recovery
X =UpgVy =U, T v

for any invertible T".

e dictionary learning
Y = AQ.XO = Aol_[l_[*XO

for any signed permutation II.
® blind deconvolution

Yy = ag *xxy = S-[ag] * S_[xo]
for any signed shift .
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Optimization under Symmetry

Definition (Symmetric Function)

Let G be a group acting on R™. A function ¢ : R” — R"™ is G-symmetric
if forall z € R", g€ G, p(go z) = ¢(2).

Most symmetric objective functions that

arise in structure signal recovery do not .
have spurious local minimizers or flat g g
saddles.

Rotational symmetry Discrete symmetry

Slogan 1: the (only!) local minimizers are symmetric versions of

the ground truth.
Slogan 2: any local critical point has negative curvature in direc-
tions that break symmetry.
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Basic Calculus

Critical points or stationary points: gradient vanishes

Convex Non-Convex

Local min

Minimizer Global min

® convex function: critical point = minimizer

® nonconvex function: not all critical point are minimizer
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Introduction & Motivation of Nonconvex Optimization
Basic Calculus

Critical points with non-singular hessian

® minimizer: hessian is positive definite

® saddle points: hessian has both positive and negative eigenvalues
® maximizer: hessian is negative definite

Minimizer

Vip>0
Noncritical Point (V¢ # 0)

Saddle

Max1m1zer

Amin V2 p<0
Amax V20 >0
Yugian Zhang

Vip <0
Critical Points (V¢ = 0)

Nonconvex Optimization Methods
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@® Symmetry & Geometry for Nonconvex Problems in Practice
Problems with Rotational Symmetry
Problems with Discrete Symmetry



Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Problems with Rotational Symmetry

Eigenspace Computation

Compute the principal subspace
of a symmetric matrix.

Symmetry: X — XR
G=0(r)

minyx x_y — 3trace [X*AX].

Generalized Phase Retrieval

Recover a complex vector o from
magnitude measurements y = | Azo|.

ming 3[y* — |Az?|3.

Symmetry: x — xe'?
G=S'>0(2)

Nonconvex Problems with Rotational Symmetries

Matrix Recovery

Recover a low-rank matrix X = UV'*
from incomplete / corrupted observations

ming,v L(Y — A[UV*]) + p(U,V).

Symmetry: (U, V) — (UT, VI %)
G =GL(r) or G = O(r)

Yugian Zhang

Nonconvex Optimization Methods

May 25, 2022
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low rank matrix recovery
Goal: Given Y = A(X), recover low rank matrix X = UpV}

@ 5 3 3 5
o 7?2 2
5@ = Po

5 7 . ? 55 ... 3

Complete Ratings X

Observed (Tncomplete) Ratings Y

e Convex Formulation

i X T Y =AX
min X, s (X)

® Nonconvex Formulation

. -~ Ty||?
erm B e Y — AUV, +reg(U,V)
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Low Rank Matrix Recovery

. 1 T 12
min 5 |Y — AUV} +reg(U, V)
Inherent Symmetry:

X = UV = U, T vy

for any invertible I' € R™*".

=] & = E DA
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

1
min 5 [[Y - AUVT)|% + reg(U, V)

Inherent Symmetry:
X =UyVy =U, T 'vo

for any invertible I' € R™*".

* Are (UoI, VoI'™ 1) the only local solutions?

® Does there exist flat stationary points?
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry
Rank-1 Symmetric Matrix

Simplifications:
cY=AX)=X
® X = UyU/! is symmetric and rank-1

T T
X =wuouy = (—uo)(—ug)
the rotational symmetry is reduced to sign symmetry.

Nonconvex formulation:

. .1
min o(u) = 1 | X — uuTHjJ + A ul3

const
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry
Rank-1 Symmetric Matrix

. o1 T2
min d(u) = 1 HX —uu HF
Critical points have zero gradient

Vo = (uul — X)u
= [lul3w - Xu
=0
therefore critical points must be one of the following
® u=zug

L] u:O
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Rank-1 Symmetric Matrix
min  ¢(u)
u
with the second order derivative

1 2
111X —

V2 = 2uu’ + ||lul5 - X.

=] & = E DA
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry
Rank-1 Symmetric Matrix

. . 1 T2
min d(u) = 1 HX —uu HF

with the second order derivative
Vi = 2uu’ + ||u||§ I-X.

Then the critical points can be grouped as

¢ Local minimizer u = +ug and uu? = X
2
V2 = uu® + |ul; 1.
® Maximizer u =0

Vi =-X.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

Symmetric low rank matrix
min g(u) = - | X — UUT|.
U 4 F
General low rank matrix recover

. 1
min o(w) = 5 | X ~ UV AU+ AV

Local minimizers: are ground truth Uy and Vj up to rotation;
Negative curvature: between multiple local minimizers.
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Symmetry & Geome

for Nonconvex Problems in Practice

Problems with Discrete Symmetry

Nonconvex Problems with Discrete Symmetries
Eigenvector Computation

Maximize a quadratic form

over the sphere.

Dictionary Learning

Approximate a given matrix Y’

asY ~ AX, with X sparse

max,egn-1 ya* Aw.

min geq,x 31Y — AX[% + AIX|1.
Symmetry: x — —x Symmetry: (A, X) — (AT, XT*)
G = {+1} G = SP(n)
Tensor Decomposition
Determine components a; of an orthogonal
decomposable tensor T = Y, a; ® a; ® a; @ a;

Short-and-Sparse Deconvolution

Recover a short a and a sparse @
from their convolution y = a * .

maxxeo(n) ; T(®i, @i, Ti, i).
Symmetry: X — XT
G=P(n)

ming,x 3|y —ax2[3 + Aa|i.

Symmetry: (a,x) — (as-[a),a"Ls_[z])
G = Zn xRy or G = Zp x {#1}
Nonconvex Optimization Me

m]

=



Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Dictionary Learning

Goal: Given dataset Y, find the optimal dictionary A that renders the
sparsest coefficient X

min || X[, st Y =AX.
A, X

)

In presence of noise, the optimization problem can be rewritten as

1 )
min 5 1Y — AX|Z+ A X,

Inherent Symmetry:
Y = A)IT* X,

for any signed permutation matrix I.
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e D = R e
Orthogonal Dictionary Learning

® |nput: matrix Y which is the product of an orthogonal matrix Ay
(called a dictionary) and a sparse matrix X:

Y = AoXo, AoAé = I, Xo sparse.
® Optimization Formulation

min [ X, st Y =AX, AA"=1I
AX

® Given the optimization constraint, X is uniquely defined in terms of
A

X =A"AX = A"Y.
® Equivalent formulation

min  [JA'Y|,.
AcO(n)
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e D = R e
Orthogonal Dictionary Learning

Instead of aiming to solve the entire matrix A = [a1, ..., ay] at once via

min  [|[ATY||;.
AcO(n)

A simpler model problem solves for the columns a; one at a time

min  |a*Y|;.
lall,=1

More simplifications:
® orthogonal dictionary Ay = I,

® sparse coefficients Xg =1

min  |a], .
lall,=1 !
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e D = R e
Orthogonal Dictionary Learning

min  |a], .
lall,=1 !

To obtain the second order information for stationary points, we use a
smoothed ¢; penalty — Huber loss

==+ Llloss
— L2loss
===* Huber loss

Nzl = A2/2 x| > A
22 /2 lz| < A

min  ¢(a) = hy(a).

llall;=1

Yugian Zhang Nonconvex Optimization Methods May 25, 2022 27/52



Orthogonal Dictionary Learning — Calculus
min

lall,=1 Hla) =

h)\(a),

a;| — 2
ha(ai) = {2/2! N2 /2

‘(Ii’ > )\,
The Euclidean gradient

V¢ = Xsign(a) o Lg>x + a0 Ljg <y

With the sphere constraint, a critical point satisfies V¢p = 0 or V¢ x a.

a  sign(a).
=] & = E DA
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning — Calculus

Recall that
V¢ = Xsign(a) o 1gjsx + @ o 1jg<y

has first-order critical points a « sign(a). Denote I = supp(a), then the
Riemannian Hessian over the sphere follows

Hess[¢] = P,. Vi —  (Ve,a)T P,
~—~ —_——
curvature of ¢  curvature of the sphere

=P,.[D1,_, — AI|1)P,.

with P,1 = I —aa”™. The Hessian exhibits |I| — 1 negative eigenvalues
and n — |I| positive eigenvalues.
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Orthogonal Dictionary Learning — Calculus
® a = +e;, then the Hessian is positive definite
Hess[¢p] = P, [(1 = A\)I — AD¢,|P,. = P,.[(1 - \)I|P,.
WIthPJ_—I—ez =1-D,;

o g — Eiel iﬁei, there exist negative curvatures alone e;(i € I)

Hess[¢] = P, . [(1 — AIDy,,, ., — Al Dl‘aw} P,..
®a=3 :I:fez, then |I| = n and the Hessian is negative definite.

Hess[¢p] = P, [—AnI|P,.

with P,y =T —aa” = (1 —1/n)I.
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Orthogonal Dictionary Learning — Geometry
Local minimizers are ground truth e; or —e;.
Negative curvature between multiple local minimizers.

Yugian Zhang

Nonconvex Optimization Methods




Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Short-and-Sparse Blind Deconvolution

Goal: Given convolutional data y, find the short signal a and the sparse
signal « such that y = a x .

Inherent Symmetry:

1 N
Y = ag *x Ty = aslag] * 5 [20] /\ N ——

for any shift [ and nonzero scaling.
The practical optimization problem can be written as

min 3 [ly—axz|p+ Al
lal=1.2
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Symmetry & Geometry for Nonconvex Problems in Practice

Objective Function — Near One Shift

SPtn{a €SPt ||a — seag)l2 <}
truth.

Objective function is strongly convex near a shift sy[ag] of the ground

Yugian Zhang
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Objective Function — Linear Span of Two Shifts

Yugian Zhang

Subspace 8{51,52} = {aw, s¢,[ao] + auyse,[ao] | cuy, ap, € R}

Nonconvex Optimization Methods

DA




Symmetry & Geometry for Nonconvex Problems in Practice

5{51 Lo}

Objective Function — Linear Span of Two Shifts

Local minimizers are near signed shifts +s/[ao].

Negative curvature between two shifts sy, [ag], sg,[ao].
Yugian Zhang
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Objective Function — Multiple Shifts

S{gl,gz,g?)} N Sp-1

Yugian Zhang

Objective ¢, over the linear span Sy, ¢, ¢, = {Z?Zl ay,; ¢, |aol}
Local minimizers are near signed shifts £sy, [ao].

Nonconvex Optimization Methods




Symmetry and Nonconvexity
truth.

e the (only!) local minimizers are symmetric versions of the ground

® there is negative curvature in directions that break symmetry.

Rotational symmetry

Discrete symmetry
=] & = E DA
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© Efficient Nonconvex Optimization
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Efficient Nonconvex Optimization

Nonconvex Optimization

Consider the problem of
minimizing a general nonlinear function:

mzinf(a:), xeC (5)

In the worst case, even finding
.. . i 1 minimizi 1 dl ind
a local minimizer can be NP-hard?. Spuriousloca e Tlatsaddiepoins

Nonconvex problems that

arise from natural physical, geometrical,
or statistical origins typically have

nice structures, in terms of symmetries!

Rotational symmetry Discrete symmetry

2Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987 o = = =
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ST A NIV ROLINIPEIE M Objectives of Nonconvex Optimization

Objectives
Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions:

Ve,y  [VF(y) = V@)l < Lilly — =2 (6)

with benign objectives:
@ convergence to some critical point @, such that: V f(x,) = 0;
® the critical point x, is second-order stationary: V2f(:n*) > 0.

Example: in general f could have irregular second-order stationary points:

- - WD

Minimizer Saddle Maximizer
Vip>0 Amin V29 < 0 V3p <0
Amax V20 > 0
Noncritical Point (V¢ # 0) Critical Points (V¢ = 0)
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CL s e e
Objectives

Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions with benign objectives:

@ convergence to some critical point @, such that: V f(x,) = 0;

® the critical point x, is second-order stationary: VZf(:I:*) > 0.

Example: a function ¢ with symmetry only has regular critical points:

- -

—

Minimizer Saddle Maximizer
Vip>0 Amin V20 < 0 Vip <0
Amax V2o > 0
Noncritical Point (Vi # 0) Critical Points (Vy = 0)
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Objectives of Nonconvex Optimization
“Any Reasonable Algorithm” Works

Key issue: using negative curvature
Amin (Hessf) < 0
to escape saddles.
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Objectives of Nonconvex Optimization
“Any Reasonable Algorithm” Works

Key issue: using negative curvature
Amin(Hessf) < 0
to escape saddles.

Efficient (polynomial time) methods:
Trust region method, analyses in [Sun, Qu, W., '17]
Curvilinear search, [Goldfarb, Mu, W., Zhou, '16]

Noisy (stochastic) gradient descent, [Jin et. al. '17].
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Objectives of Nonconvex Optimization
“Any Reasonable Algorithm” Works

Key issue: using negative curvature
Amin(Hessf) < 0
to escape saddles.

Efficient (polynomial time) methods:

Trust region method, analyses in [Sun, Qu, W., '17]

Curvilinear search, [Goldfarb, Mu, W., Zhou, '16]

Noisy (stochastic) gradient descent, [Jin et. al. '17].

Randomly initialized gradient descent ....

Obtains a minimizer almost surely [Lee et. al. '16].

Efficient for matrix completion, dictionary learning, ... not efficient in general.
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Objectives of Nonconvex Optimization
Worst Case vs. Naturally Occurring Strict Saddle Functions

50
5 >
§ 0
=1
o -50
=
k3]
2.-100
[s] 20
-150 0
20
10 0 10, 20
x Xy
1 e
Worst Case Naturally Occuring
[Du, Jin, Lee, Jordan, Poczos, Singh '17] DL, Other sparsification problems
Concentration around stable manifold Dispersion away from stable manifold
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ST A NIV ROLINIPEIE M Objectives of Nonconvex Optimization

Worst Case vs. Naturally Occurring Strict Saddle Functions

® Red: “slow region” of
small gradient around a
saddle point.

® Green: stable manifold
associated with the
saddle point.

® Black: points that flow
to the slow region.

® | eft: global negative curvature normal to the stable manifold

® Right: positive curvature normal to the stable manifold — randomly
initialized gradient descent is more likely to encounter the slow region.
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Gradient Descent Works for DL and Related Problems

ol ||
i s
i

g

=] = APRN G4
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Objectives of Nonconvex Optimization
Gradient Descent Works for DL and Related Problems

Dispersive structure: Negative curvature | stable manifolds.

W.h.p. in random initialization q(®) ~ uni(S*~!), convergence to a

neighborhood of a minimizer in polynomial iterations. [Gilboa,
May 25, 2022 44/52



Objectives of Nonconvex Optimization
Alternating Descent Method

1 2
min —||ly — a* x| +A x
e, Y 742 =l
m,thg_/ nonsmooth A

® Fix a and take a proximal descent step on x
z* ) prox)t (:z:(k) - th(a(k),:B(k)))
® Fix x and take a projected descent step on a

a" ) — Py (a(k) - t'gradg(a(k),m(k))>

Yugian Zhang Nonconvex Optimization Methods May 25, 2022
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Objectives of Nonconvex Optimization
Inertial Alternating Descent Method

Accelerating first-order descent with Momentum

® Fix a and take an accelerated proximal descent step on @
w® = z® 4 8 (x(k) _ x(k—l))
2* D o prox)t (a:(k) —tVg(a®, 'w(k))>

® Fix x and take an accelerated projected descent step on a
20 — g® 4 3 (a(k) _ a(m))

a* ) Py (a(k) — t'gradg(z(k),a:(k))>
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ST A NIV ROLINIPEIE M Objectives of Nonconvex Optimization

Convergence Comparison
For blind deconvolution problem

1 2
min  _ly - axzlp + Al
acS"lax 2
(a) function value convergence (b) iterate convergence

4 — ADM 0 — ADM

iADM iADM
2+ — homotopy-ADM — homotopy-ADM
— homotopy-iADM — homotopy-iADM

2
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Iteration Iteration

3
3The homotopy counterpart shrinks X in every iteration.
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el
Escaping Saddles in Worst Case Problems

50
5 >
§ 0
=1
o -50
=
k3]
2.-100
[s] 20
-150 0
20
10 0 10, 20
x Xy
1 e
Worst Case Naturally Occuring
[Du, Jin, Lee, Jordan, Poczos, Singh '17] DL, Other sparsification problems
Concentration around stable manifold Dispersion away from stable manifold
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el
Trust Region Method

Function class: f nonconvex.

The oracle: gradient Vf(x), Hessian V2f(x), and the trusted region
radius r

Trust region update:
et =2 4§
with

8 — arg min f (:c(t)> n <Vf(:1c(k)), 5> n %aTv2f (a:(k)> b

[16]]<r

® At any stationary point, the gradient vanishes, and the above
optimization problem boils down to the Hessian term;

® At an local solution with positive semi-definite Hessian, the above
optimization problem renders § = 0.
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Gradient Descent with Small Random Noise
Function class: f nonconvex and Lips. continuous.

The oracle: gradient V f(x) and small random noise.

The updates for noisy gradient descent (Langevine dynamics):

k) — 2 _ 1, V(™)) + ton,

This avoids computing expensive Hessian.
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Efficient Nonconvex Optimization RS EASEL

Hybrid Noisy Gradient Descent

Function class: f nonconvex and Lips. continuous.
The oracle: gradient V f(x) and small noise n.
Hybrid noisy gradient descent:

o if [Vf(xk)|2 > €g, then xp 1 = xx — 61V f(xh);

® else m% = xp, and negative curvature descent with noisy gradients:

fori=0,1,2,..., kpax = O(logn)

azﬁl = :16}C — t1Vf(zc}'€) + ton?,

where nt ~ N(0, I).

More saddle-escaping first-order optimization methods in book:
Wright and Ma: https://book-wright-ma.github.io.

Yugian Zhang Nonconvex Optimization Methods
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https://book-wright-ma.github.io

Efficient Nonconvex Optimization RS EASEL

Conclusion and Coming Attractions

For Nonconvex, Sparse and Low-rank problems

® Benign Geometry:
® The only local minimizers are symmetric copies of the ground truth
® There exist negative curvatures breaking symmetry

e Efficient Algorithms:

® gradient descent algorithms always suffice
® proximal, projection, acceleration steps can be transferred over

[ Next lecture: Exploiting Low-D Structures via Deep Networks.

Thank You! Questions?
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