
ICASSP 2022 Short Course One on
Low-Dimensional Models for High-Dimensional Data

Lecture 2: Scalable Convex Optimization Methods for
Low-Dimensional Structures

Sam Buchanan, Yi Ma, Qing Qu
John Wright, Yuqian Zhang, Zhihui Zhu

May 24, 2022

Qing Qu Scalable Convex Optimization Methods May 24, 2022 1 / 77



Recap for Recovery of Low-dimensional Structures
Parallel developments for sparse vectors and low-rank matrices.

Sparse v.s. Low-rank Sparse Vector Low-rank Matrix

Low-dimensionality of individual signal x a set of signals X

Compressive sensing y = Ax Y = A(X)

Low-dim measure ℓ0 norm ∥x∥0 rank(X)

Convex surrogate ℓ1 norm ∥x∥1 nuclear norm ∥X∥∗

Success conditions (RIP) δ2k(A) ≥
√
2− 1 δ4r(A) ≥

√
2− 1

Random measurements m = O
(
k log(n/k)

)
m = O(nr)

Stable/Inexact recovery y = Ax+ z Y = A(X) +Z

Phase transition at Stat. dim. of descent cone: m∗ = δ(D)
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Motivating Examples for Recovery of Low-Dim Models

Sparse Recovery

Recovering a sparse signal xo from:

y
observation

= A xo
unknown

, (1)

where A ∈ Rm×n is a linear map.
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Motivating Examples for Recovery of Low-Dim Models

Sparse Recovery

• Basis pursuit (BP):

min
x
∥x∥1 , s.t. y = Ax.

• Basis pursuit denoising (BPDN):

min
x
∥x∥1 , s.t. ∥y −Ax∥2 ≤ δ,

which is equivalent to the lasso problem with properly chosen λ:

min
x

1

2
∥y −Ax∥22 + λ ∥x∥1
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Motivating Examples for Recovery of Low-Dim Models

Low-Rank Matrix Recovery

Recommendation Ratings:

We observe:

Y
Observed ratings

= PΩ
[

X
Complete ratings

]
,

where Ω
.
=

{
(i, j) | user i has rated product j

}
.
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Motivating Examples for Recovery of Low-Dim Models

Low-Rank Matrix Recovery

Recommendation Ratings:

Recovering a low-rank matrix Xo:

y
observation

= A
[

Xo
unknown

]
, (2)

where, A : Rn1×n2 → Rm is a linear map.
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Motivating Examples for Recovery of Low-Dim Models

Low-Rank Matrix Recovery

• Nuclear norm minimization:

min
X
∥X∥∗ , s.t. y = A [X] .

• Nuclear norm minimization under noise:

min
X
∥X∥∗ , s.t. ∥y −A [X]∥F ≤ δ.

Similarly, the problem is equivalent to

min
X

1

2
∥y −A [X]∥2F + λ ∥X∥∗ ,

for properly chosen λ > 0.
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Motivating Examples for Recovery of Low-Dim Models

Low-rank & Sparse Decomposition

Robustly recover a low-rank matrix Lo from:

Y
observation

= Lo
unknown low-rank

+ So
unknown sparse

, (3)

where Lo ∈ Rn1×n2 is low-rank, and So ∈ Rn1×n2 is sparse.
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Motivating Examples for Recovery of Low-Dim Models

Low-rank & Sparse Decomposition

• Principal component pursuit (PCP):

min
L,S
∥L∥∗ + λ ∥S∥1 , s.t. Y = L+ S.

• Stable principal component pursuit (Stable PCP):

min
L,S
∥L∥∗ + λ ∥S∥1 +

µ

2
∥Y −L− S∥2F
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Motivating Examples for Recovery of Low-Dim Models

Convex Nonsmooth Problems

min
x∈Rn

F (x) = f(x)
smooth

+ g(x)
nonsmooth

• Basis pursuit denoising:

f(x) =
1

2
∥y −Ax∥22 , g(x) = λ ∥x∥1 .

• Stable low-rank matrix recovery:

f(X) =
1

2
∥y −A[X]∥2F , g(X) = λ ∥X∥∗ .

• Stable PCP:

f(L,S) =
µ

2
∥Y −L− S∥2F , g(L,S) = ∥L∥∗ + λ ∥S∥1 .
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Motivating Examples for Recovery of Low-Dim Models

Optimization Challenges for Structured Data Recovery

min
x∈Rn

F (x)
.
= f(x)︸︷︷︸

smooth convex

+ g(x).︸ ︷︷ ︸
nonsmooth convex

(4)

• Challenge of Scale: scale algorithms to when n is very large.

Second order methods =⇒ First order methods... (5)

• Nonsmoothness: first order methods are slow for nonsmooth.

O(1/
√
k) =⇒ O(1/k) =⇒ O(1/k2) =⇒ O(e−αk) (6)

• Equality Constraints: augmented Lagrange multiplier (ALM).

• Separable Structures: alternating direction of multipliers method
(ADMM).
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Motivating Examples for Recovery of Low-Dim Models

Gradient Descent for Smooth Functions, [Cauchy, 1847]

For minimizing a smooth convex function (App. B):

min f(x), x ∈ C (a convex set), (7)

conduct local gradient descent search (App. D):

xk+1 = PC (xk − τk∇f(xk)) , (8)

where a rule of thumb: τk ≈ 1/L, where L the Lipschitz constant.

- figure courtesy of Prof. Carlos Fernandez of NYU.
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Motivating Examples for Recovery of Low-Dim Models

(Projected) Subgradient Methods

min
x

F (x)
nonsmooth

, s.t. x ∈ C
convex constraint

.

• The loss function F (·) is nonsmooth: cannot apply gradient descent,
as ∇F (x0) might not exist.

• Similar to GD, a natural choice is the “subgradient-based method”:

xk+1 = PC (xk − τk · gk) ,

• Here, gk ∈ ∂F (x) is any subgradient of F (·) at xk;
PC(·) is the projection onto the set C.
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Motivating Examples for Recovery of Low-Dim Models

Subgradient & Subdifferential

Definition (Subgradient)

Let F : Rn 7→ R be convex. A subgradient of F at x0 is any g satisfying

F (x) ≥ F (x0) + ⟨g,x− x0⟩ , ∀ x ∈ Rn.
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Motivating Examples for Recovery of Low-Dim Models

Subgradient & Subdifferential

Definition (Subdifferential)

Subdifferential is the set of all subgradients of F (·) at x0:

∂F (x0) := {g | F (x) ≥ F (x0) + ⟨g,x− x0⟩ , ∀x ∈ Rn} .
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Motivating Examples for Recovery of Low-Dim Models

Examples of Subgradient

• Absolute value function F (x) = |x|:

∂F (x) =


{1} x > 0,

[−1, 1] x = 0,

{−1} x < 0.

• ℓ1-norm F (x) = ∥x∥1 =
∑n

i=1 |xi|:

∂F (x) = ∂F (x1)× · · · × ∂F (xn), x ∈ Rn.
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Motivating Examples for Recovery of Low-Dim Models

Slow Convergence of the Subgradient Method

Suppose C = Rn, and the subgradient method

xk+1 = xk − τk · gk,

with τk being the stepsize and gk ∈ ∂F (xk) is a subgradient of F at xk.

Theorem (O(1/
√
k) convergence of subgradient methods)

Suppose F : Rn 7→ R is L-Lipschitz, and the optimal function value is F⋆.
Choose the stepsize satisfying τk = Fk−F⋆

∥gk∥22
, then we have the convergence

rate

Fbest,k − F⋆ ≤
RL√
k
,

where Fbest,k = min1≤i≤k F (xi) and R ≥ ∥x0 − x⋆∥2.
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Motivating Examples for Recovery of Low-Dim Models

Comparison of Convergence1

min
x∈Rn

F (x) =
1

2
∥y −Ax∥22 + λ ∥x∥1 .

1
https://github.com/RoyiAvital/Projects/tree/master/Optimization/LsL1SolversAnalysis
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Motivating Examples for Recovery of Low-Dim Models

Comparison of Convergence2

• For recovery of low-dimensional models, generic solvers are slow
(e.g., subgradient method).

2
https://github.com/RoyiAvital/Projects/tree/master/Optimization/LsL1SolversAnalysis
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Motivating Examples for Recovery of Low-Dim Models

1 Motivating Examples for Recovery of Low-Dim Models

2 (Accelerated) Proximal Methods

3 Alternating Direction Methods of Multipliers (ADMM)

4 Summary & Extensions
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(Accelerated) Proximal Methods

Composite Nonsmooth Problems

min
x∈Rn

F (x) = f(x)
smooth

+ g(x)
nonsmooth

• The function f(·) : Rn 7→ R is convex, continuously differentiable,
and L-smooth with∥∥∇f(x)−∇f(x′)

∥∥
2
≤ L

∥∥x− x′∥∥
2
, ∀x, x′ ∈ Rn.

• g(·) : Rn 7→ R is convex but possibly nonsmooth.
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(Accelerated) Proximal Methods

Composite Nonsmooth Problems

min
x∈Rn

F (x) = f(x)
smooth

+ g(x)
nonsmooth

• Basis pursuit denoising:

f(x) =
1

2
∥y −Ax∥22 , g(x) = λ ∥x∥1 .

• Stable low-rank matrix recovery:

f(X) =
1

2
∥y −A[X]∥2F , g(X) = λ ∥X∥∗ .

• Stable PCP:

f(L,S) =
µ

2
∥Y −L− S∥2F , g(L,S) = ∥L∥∗ + λ ∥S∥1 .

Qing Qu Scalable Convex Optimization Methods May 24, 2022 23 / 77



(Accelerated) Proximal Methods

Gradient Descent, [Cauchy, 1847]

For minimizing a smooth convex function (App. B):

min f(x), x ∈ C (a convex set),

conduct local gradient descent search (App. D):

xk+1 = xk − γk∇f(xk),

where a rule of thumb: γ ≈ 1/L, where L the Lipschitz constant (why?).

- figure courtesy of Prof. Carlos Fernandez of NYU.
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(Accelerated) Proximal Methods

Gradient Descent

For f(x) has L-Lipschitz continuous gradients if

∥∇f(x′)−∇f(x)∥2 ≤ L∥x′ − x∥2, ∀x′,x ∈ Rn. (9)

This gives a matching quadratic upper bound:

f(x′) ≤ f̂(x′,x)

.
= f(x) +

〈
∇f(x),x′ − x

〉
+

L

2

∥∥x′ − x
∥∥2
2

=
L

2

∥∥x′ − (x− τ∇f(x))
∥∥2
2
+ h(x).

Take a step to the minimizer of this bound:

xk+1 = argmin
x′

f̂(x′,xk) = xk −
1

L
∇f(xk).

Fact: this gives a convergence rate of O(1/k).
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(Accelerated) Proximal Methods

Proximal Gradient Descent
The same (local) strategy for a convex function with a nonsmooth term:

min
x∈Rn

F (x) = f(x)
smooth

+ g(x)
nonsmooth

Upper bound:

F̂ (x,xk) = f(xk) + ⟨∇f(xk),x− xk⟩+
L

2
∥x− xk∥22 + g(x)

=
L

2
∥x− (xk − τ∇f(xk))∥22 + g(x) + h(xk).

A step to the minimizer of the bound F̂ (x,xk):

xk+1 = argmin
x

L

2

∥∥x− (xk −
1

L
∇f(xk))︸ ︷︷ ︸

wk

∥∥2
2
+ g(x)

= argmin
x

L

2
∥x−wk∥22 + g(x).
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(Accelerated) Proximal Methods

Proximal Operator

Definition (Proximal Operator)

The proximal operator of a convex function g(·) : Rn 7→ R is

proxg(w) := min
x

{
1

2
∥x−w∥22 + g(x)

}

Thus, the proximal iteration can be written as

xk+1 = argmin
x

{
L

2
∥x−wk∥22 + g(x)

}
= proxg/L(wk)

For many structured low-dim problems, the proximal mapping has
closed-form and can be computed efficiently!
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(Accelerated) Proximal Methods

Proximal Operator

Definition (Proximal Operator)

The proximal operator of a convex function g(·) : Rn 7→ R is

proxg(w) := min
x

{
1

2
∥x−w∥22 + g(x)

}

Example: ℓ1-norm

• g(x) = t ∥x∥1, proxg(·) is the soft-thresholding operator softt(·):

[
proxg(w)

]
i
= [softt(w)]i =


wi − t wi ≥ t

0 |wi| ≤ t

wi + t wi ≤ −t
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(Accelerated) Proximal Methods

Proximal Operator
How to prove it?

• Subgradient characterization: for any convex function F : Rn 7→ R,

F (x⋆) = min
x∈Rn

F (x) ⇐⇒ 0 ∈ ∂F (x⋆)

• Proof ideas of the proximal operator for g(x) = t ∥x∥1:
The objective function reaches minimum when the subdifferential of

F (x) =
1

2
∥x−w∥22 + t∥x∥1

contains zero, that is

0 ∈ (x−w) + t∂∥x∥1 =


xi − wi + t, xi > 0
−wi + t[−1, 1], xi = 0
xi − wi − t, xi < 0

, i = 1, . . . , n.
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(Accelerated) Proximal Methods

Proximal Operator

Thresholding:

Example: ℓ1-norm

• g(x) = t ∥x∥1, proxg(·) is the soft-thresholding operator:

[
proxg(w)

]
i
= [softt(w)]i =


wi − t wi ≥ t

0 |wi| ≤ t

wi + t wi ≤ −t

Qing Qu Scalable Convex Optimization Methods May 24, 2022 30 / 77



(Accelerated) Proximal Methods

Proximal Operator

Definition (Proximal Operator)

The proximal operator of a convex function g(·) : Rn×m 7→ R is

proxg(W ) := min
X∈Rm×n

{
1

2
∥X −W ∥2F + g(X)

}

Example: nuclear norm

• g(W ) = t ∥W ∥∗ with W = UΣV ⊤, then proxg(·) is the singular
value thresholding operator:

proxg(W ) = Usoftt(Σ)V ⊤.
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(Accelerated) Proximal Methods

Proximal Gradient Algorithm

Proximal Gradient (PG)

Problem Class: minx F (x) = f(x) + g(x)

f, g : Rn → R convex, ∇f L-Lipschitz and g nonsmooth.

Basic Iteration: set x0 ∈ Rn.
Repeat:

wk ← xk −
1

L
∇f(xk),

xk+1 ← proxg/L[wk].

Convergence Guarantee:

F (xk)− F (x⋆) converges at a rate of O(1/k).
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(Accelerated) Proximal Methods

Example: Proximal Gradient for Basis Pursuit Denoising

Iterative soft-thresholding algorithm (ISTA):

1: Problem: minx
1
2∥y −Ax∥22 + λ∥x∥1, given y ∈ Rm, A ∈ Rm×n.

2: Input: x0 ∈ Rn and L ≥ λmax(A
∗A).

3: for (k = 0, 1, 2, . . . ,K − 1) do
4: wk ← xk − 1

LA
∗(Axk − y).

5: xk+1 ← softλ/L(wk).
6: end for
7: Output: x⋆ ← xK .

The unrolled iterations
resemble a deep neural
network!3

3Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun,
ICML 2010. Also known as the Learned ISTA (LISTA).
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(Accelerated) Proximal Methods

From ISTA to Learned ISTA (LISTA)
1: Problem: minx

1
2∥y −Ax∥22 + λ∥x∥1, given y ∈ Rm, A ∈ Rm×n.

2: Input: x0 ∈ Rn and L ≥ λmax(A
∗A).

3: for (k = 0, 1, 2, . . . ,K − 1) do
4: wk ← xk − 1

LA
∗(Axk − y).

5: xk+1 ← softλ/L(wk).
6: end for
7: Output: x⋆ ← xK .

The unrolled iterations resemble
a deep neural network!

We can optimize the optimization path of ISTA using supervised learning4:

wk ← xk −
1

L
A∗(Axk − y) =

(
I − 1

L
A∗A

)
︸ ︷︷ ︸

learnable parameter S

xk +
1

L
A∗Ay︸ ︷︷ ︸

learnable parameter b

4Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun, ICML 2010.
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(Accelerated) Proximal Methods

Example: Proximal Gradient for Basis Pursuit Denoising

Iterative soft-thresholding algorithm (ISTA):

1: Problem: minx
1
2∥y −Ax∥22 + λ∥x∥1, given y ∈ Rm, A ∈ Rm×n.

2: Input: x0 ∈ Rn and L ≥ λmax(A
∗A).

3: for (k = 0, 1, 2, . . . ,K − 1) do
4: wk ← xk − 1

LA
∗(Axk − y).

5: xk+1 ← softλ/L(wk).
6: end for
7: Output: x⋆ ← xK .

Proximal Gradient vs.
Subgradient Method.
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(Accelerated) Proximal Methods

Can We Further Accelerate Convergence?

Recall gradient descent for smooth minx f(x):

xk+1 = xk − α∇f(xk).

The heavy ball method [Polyak, 1964]

xk+1 = xk − α∇f(xk) + β
(
xk − xk−1

)︸ ︷︷ ︸
momentum

.

It is also called the momentum method:

• Basis for popular ADAM for train deep neural networks.

• Worst convergence rate is still O(1/k), yet best possible is O(1/k2).
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(Accelerated) Proximal Methods

Accelerated Gradient Descent [Nesterov, 1983]

Generate an auxiliary point pk+1 of the form:

pk+1
.
= xk + βk+1

(
xk − xk−1

)
.

Move from xk to pk+1, and gradient descend from it:

xk+1 = pk+1 − α ∇f(pk+1)︸ ︷︷ ︸
a stroke of genius

.

The weights α and {βk+1} are carefully chosen:

t1 = 1, tk+1 =
1 +

√
1 + 4t2k

2
, βk+1 =

tk − 1

tk+1
, α = 1/L.

• We may not always have f(xk+1) ≤ f(xk).

• Achieve optimal convergence rate O(1/k2) among 1st order methods.
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(Accelerated) Proximal Methods

Accelerated Proximal Gradient for Nonsmooth Problems

Accelerated Proximal Gradient (APG)

Problem Class: minx F (x) = f(x) + g(x),
f, g convex, with ∇f L-Lipschitz and g nonsmooth.

Basic Iteration: set x0 ∈ Rn, p1 = x1 ← x0, and t1 ← 1.
Repeat for k = 1, 2, . . . ,K:

tk+1 ←
1 +

√
1 + 4tk2

2
, βk+1 ←

tk − 1

tk+1
.

pk+1 ← xk + βk+1

(
xk − xk−1

)
.

xk+1 ← proxg/L
[
pk+1 −

1

L
∇f(pk+1)︸ ︷︷ ︸

proximal gradient

]
.

Convergence Guarantee:
F (xk)− F (x⋆) converges at a rate of O(1/k2).
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(Accelerated) Proximal Methods

Proximal Gradient versus Accelerated Proximal Gradient
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(Accelerated) Proximal Methods

Example I: APG for Basis Pursuit Denoising

FISTA: Accelerated Proximal Gradient (APG) for LASSO

1: Problem: minx
1
2∥y −Ax∥22 + λ∥x∥1, given y ∈ Rm, A ∈ Rm×n.

2: Input: x0 ∈ Rn, p1 = x1 ← x0, and t1 ← 1, and L ≥ λmax(A
∗A).

3: for (k = 1, 2, . . . ,K − 1) do

4: tk+1 ←
1+
√

1+4t2k
2 ; βk+1 ← tk−1

tk+1
.

5: pk+1 ← xk + βk+1(xk − xk−1).
6: wk+1 ← pk+1 − 1

LA
∗(Apk+1 − y).

7: xk+1 ← soft[wk+1, λ/L].
8: end for
9: Output: x⋆ ← xK .
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(Accelerated) Proximal Methods

ISTA vs. FISTA
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(Accelerated) Proximal Methods

Example II: APG for Stable PCP

Accelerated Proximal Gradient (APG) for Stable PCP

1: Problem: minL,S ∥L∥∗ + λ∥S∥1 + µ
2∥Y −L− S∥2F , given Y .

2: Input: L0,S0 ∈ Rm×n, P S
1 = S1 ← S0, P

L
1 = L1 ← L0, t1 ← 1.

3: for (k = 1, 2, . . . ,K − 1) do

4: tk+1 ←
1+
√

1+4t2k
2 , βk+1 ← tk−1

tk+1
.

5: P L
k+1 ← Lk + βk+1

(
Lk −Lk−1

)
; P S

k+1 ← Sk + βk+1

(
Sk − Sk−1

)
.

6: Wk+1 ← Y − P S
k+1 and compute SVD: Wk+1 = Uk+1Σk+1V

∗
k+1.

7: Lk+1 ← Uk+1soft[Σk+1, 1/µ]V
∗
k+1; Sk+1 ← soft[(Y − P L

k+1), λ/µ].
8: end for
9: Output: L⋆ ← LK ;S⋆ ← SK .
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(Accelerated) Proximal Methods

GD for Strongly Convex Problems

A troubling fact though: Not supposed to be this fast!

Reason? Consider minimizing a L-Lipschitz continuous function

min
x

f(x), x ∈ Rn. (10)

Assume f(x) is µ-strongly convex:

f((x′) ≥ f(x) + ⟨∇f(x),x′ − x⟩+ µ

2
∥x′ − x∥22. (11)

This implies (assuming f is twice differentiable):

0 ≺ µI ⪯ ∇2f(x) ⪯ LI.
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(Accelerated) Proximal Methods

Convergence of GD for Strongly Convex Problems

Theorem (see Appendix D).
f(x): µ-strongly convex and L-Lipschitz continuous.
For gradient descent with a step size t = 2

L+µ , we have:

∥xk − x⋆∥2 ≤
(
κ− 1

κ+ 1

)k

∥x0 − x⋆∥2, (12)

where κ = L/µ and x⋆ is the minimizer.

Convergence Rates for Gradient Descent:

1 f non-smooth: O(1/
√
k).

2 f differentiable: O(1/k).

3 f smooth, ∇f Lipschitz: O(1/k2).

4 f strongly convex: O(e−αk).
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(Accelerated) Proximal Methods

Convergence of Restricted Strong Convex Problems

• Fact: Structured signal recovery problems such as LASSO and PCP
satisfy restricted strong convexity.
• Hence, gradient descent enjoys globally linear convergence up to
the statistical precision of the model.5

5Fast global convergence of gradient methods for high-dimensional statistical
recovery, Agarwal, Negahban, Wainwright, NIPS 2010.
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Alternating Direction Methods of Multipliers (ADMM)

1 Motivating Examples for Recovery of Low-Dim Models

2 (Accelerated) Proximal Methods

3 Alternating Direction Methods of Multipliers (ADMM)

4 Summary & Extensions
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Alternating Direction Methods of Multipliers (ADMM)

Optimization Challenges for Structured Data Recovery

min
x∈Rn

F (x)
.
= f(x)︸︷︷︸

smooth convex

+ g(x).︸ ︷︷ ︸
nonsmooth convex

(13)

• Challenge of Scale: scale algorithms to when n is very large.

Second order methods =⇒ First order methods... (14)

• Nonsmoothness: first order methods are slow for nonsmooth.

O(1/
√
k) =⇒ O(1/k) =⇒ O(1/k2) =⇒ O(e−αk) (15)

• Equality Constraints: augmented Lagrange multiplier (ALM).

• Separable Structures: alternating direction of multipliers method
(ADMM).
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Alternating Direction Methods of Multipliers (ADMM)

Equality Constrained Problems with Separable Structures

Let us consider the two-block equality constrained problem:

min
x,z

g(x) + h(z), s.t. Ax+Bz = y.

• g : Rn 7→ R and h : Rn 7→ R are (probably nonsmooth) convex
functions.

• A and B are matrices and y ∈ range([A | B]), so that the problem
is feasible.
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Alternating Direction Methods of Multipliers (ADMM)

Constrained Nonsmooth Problem (Examples)

min
x,z

g(x) + h(z), s.t. Ax+Bz = y.

• Basis pursuit denoising (let z = x):

min
x

1

2
∥Ax− y∥22 + λ ∥x∥1

⇐⇒ min
x,z

1

2
∥Ax− y∥22︸ ︷︷ ︸

g(x)

+ λ ∥z∥1︸ ︷︷ ︸
h(z)

, s.t. x− z = 0.

• Stable low-rank matrix recovery (let Z = X):

min
X

1

2
∥A(X)− y∥22 + λ ∥X∥∗

⇐⇒ min
X,Z

1

2
∥A(X)− y∥22︸ ︷︷ ︸

g(X)

+ λ ∥Z∥∗︸ ︷︷ ︸
h(Z)

, s.t. X −Z = 0.
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Alternating Direction Methods of Multipliers (ADMM)

Examples: Constrained Nonsmooth Problem

min
x,z

g(x) + h(z), s.t. Ax+Bz = y.

• Robust PCA

min
L, S

∥L∥∗︸ ︷︷ ︸
g(L)

+λ ∥S∥1︸ ︷︷ ︸
h(S)

, s.t. L+ S = Y .
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Alternating Direction Methods of Multipliers (ADMM)

Linear Equality Constrained Optimization

Let us first consider a simpler one-block constrained problem:

min
x

g(x) subject to Ax = y, (16)

where

• g : Rn → R is a (probably nonsmooth) convex function,

• A ∈ Rm×n and y ∈ range(A) (so that the problem is feasible).

A Natural Attempt: solve the unconstrained by penalizing the constraint:

x̂(µ) = argmin
x

g(x) + µ
2 ∥Ax− y∥22 for a large µ. (17)

• Pros: As µ→ +∞, x̂(µ)→ x⋆ (the “continuation method”).

• Cons: The rate of convergence depends on L = µ∥A∥22.
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Alternating Direction Methods of Multipliers (ADMM)

A More Principled Approach via Lagrangian

Definition (The Lagrange Duality)

The Lagrangian function of the constrained problem (16):

L(x,λ) .
= g(x) + ⟨λ,Ax− y⟩,

where λ ∈ Rm is a vector of Lagrange multipliers. This gives a dual
function:

d(λ)
.
= inf

x
g(x) + ⟨λ,Ax− y⟩.

Fact (credited to Lagrange): ∃λ⋆ such that the optimal solution (x⋆,λ⋆)
is a saddle point of the Lagrangian:

sup
λ

inf
x
L(x,λ) = sup

λ
inf
x

g(x) + ⟨λ,Ax− y⟩ = sup
λ

d(λ).
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Alternating Direction Methods of Multipliers (ADMM)

Dual Ascent Algorithm for the Lagrangian

Fact: If
x′(λ) = argmin

x
g(x) + ⟨λ,Ax− y⟩,

then Ax′(λ)− y is a gradient ∇d(λ) of the concave dual function d(λ)
at λ.

A Natural Attempt to find the saddle point (x⋆,λ⋆) is via dual ascent:

xk+1 = argmin
x
L(x,λk), (18)

λk+1 = λk + tk+1(Axk+1 − y). (19)

• For certain problem classes, this converges to the optimal (x⋆,λ⋆).

• However, unfortunately it fails for problems in our settings.
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Alternating Direction Methods of Multipliers (ADMM)

An Example of Failure

Consider the basis pursuit problem:

min
x
∥x∥1 , s.t. Ax = y.

We have:

d(λ) = inf
x
∥x∥1 + ⟨λ,Ax− y⟩ = inf

x
L(x,λ).

The dual ascent algorithm:

xk+1 = argmin
x
L(x,λk)

λk+1 = λk + tk+1 (Axk+1 − y) .

• For certain problem classes, dual ascent yields efficient convergent
algorithms to an optimal primal-dual solution (x⋆,λ⋆).

• However, it may fail for problems in structured signal recovery.
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Alternating Direction Methods of Multipliers (ADMM)

An Example of Failure

Consider the basis pursuit problem:

min
x
∥x∥1 , s.t. Ax = y.

One can show that the dual function

d(λ) = inf
x
∥x∥1 + ⟨λ,Ax− y⟩ =

{
−∞

∥∥A⊤λ
∥∥
∞ > 1

−⟨λ,y⟩
∥∥A⊤λ

∥∥
∞ ≤ 1

Whenever the dual ascent step (19) happens to produce a λ such that
∥A∗λ∥∞ > 1, the algorithm will break down.

The reason is g(x) = ∥x∥1 here is not “strongly” convex enough to
dominate the linear term ⟨λ,Ax⟩.
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Alternating Direction Methods of Multipliers (ADMM)

Remedy: Augmented Lagrangian

Definition (Augmented Lagrangian Function [Hestenes’69, Powell’69])

The augmented Lagrangian function is defined as

Lµ(x,λ) := g(x) + ⟨λ,Ax− y⟩ +
µ

2
∥Ax− y∥22 ,

where µ > 0 is a penalty parameter.

The augmented Lagrangian can be regarded as the Lagrangian for

min
x

g(x) +
µ

2
∥Ax− y∥22︸ ︷︷ ︸

strongly convex

, s.t. Ax = y,

which has the same optimal solution as the original un-penalized problem.
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Alternating Direction Methods of Multipliers (ADMM)

Augmented Lagrange Multiplier

Apply dual ascent to Lµ(x,λ) with a particular step size tk+1 = µ,

xk+1 ∈ argmin
x
Lµ(x,λk), (20)

λk+1 = λk + µ (Axk+1 − y). (21)

Fact: xk+1 always minimizes the unaugmented Lagrangian L(x,λk+1) at
λ ≡ λk+1, because:

0 ∈ ∂Lµ(xk+1,λk),

= ∂g(xk+1) +A∗λk + µA∗(Axk+1 − y),

= ∂g(xk+1) +A∗λk+1,

= ∂L(xk+1,λk+1).

λk+1 is always feasible, no bad behaviors!
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Alternating Direction Methods of Multipliers (ADMM)

Augmented Lagrange Multiplier

Augmented Lagrange Multipler (ALM)

Problem Class: minx g(x) subject to Ax = y.
with g : Rn → R convex and coercive, y ∈ range(A).

Basic Iteration: set

Lµ(x,λ) = g(x) + ⟨λ,Ax− y⟩+ µ
2 ∥Ax− y∥22 .

Repeat:
xk+1 ∈ argmin

x
Lµ(x,λk),

λk+1 = λk + µ (Axk+1 − y).

Convergence Guarantee:

{xk} converges to an optimal solution at a rate O(1/k).
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Alternating Direction Methods of Multipliers (ADMM)

Example: ALM for Basis Pursuit

Augmented Lagrange Multipler (ALM) for BP

1: Problem: minx ∥x∥1 subject to y = Ax,
given y ∈ Rm and A ∈ Rm×n. The augmented Lagrangian is:

Lµ(x,λ) = ∥x∥1 + ⟨λ,Ax− y⟩+ µ
2 ∥Ax− y∥22 .

2: Input: x0 ∈ Rn, λ0 ∈ Rm, and β > 1.
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: xk+1 ← argminLµk

(x,λk) using APG.
5: λk+1 ← λk + µk(Axk+1 − y).
6: µk+1 ← min{βµk, µmax}.
7: end for
8: Output: x⋆ ← xK .
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Alternating Direction Methods of Multipliers (ADMM)

Application of ALM to the Two-Block Problem

min
x,z

g(x) + h(z), s.t. Ax+Bz = y.

• Form the augmented Lagrangian

Lµ(x, z,λ) = g(x) + h(z) + ⟨Ax+Bz − y,λ⟩

+
µ

2
∥Ax+Bz − y∥22

• Solve the problem via

(xk+1, zk+1) ∈ argmin
x,z
Lµ(x, z,λk), (could be expensive)

λk+1 = λk + µk (Axk+1 +Bzk+1 − y) .

The primal subproblem for x does not have closed-form and could
be expensive to solve.
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Alternating Direction Methods of Multipliers (ADMM)

Alternating Directions Method of Multipliers (ADMM)

min
x,z

g(x) + h(z), s.t. Ax+Bz = y.

Remedy for solving minx,z Lµ(x, z,λk):

• fix z and λ, minimize x:

xk+1 ∈ argmin
x
Lµ(x, zk,λk),

• fix x and λ, minimize z:

zk+1 ∈ argmin
z
Lµ(xk+1, z,λk),

• fix x and z, take a dual ascent step on λ:

λk+1 = λk + µk∇λLµ(xk+1, zk+1, λ).
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Alternating Direction Methods of Multipliers (ADMM)

Solutions for Subproblems via Proximal Operators

• fix z and λ, minimize x:

xk+1 = argmin
x

{
g(x) +

µ

2

∥∥∥∥Ax+Bzk − y +
1

µ
λk

∥∥∥∥2
2

}
,

• fix x and λ, minimize z:

zk+1 = argmin
z

{
h(z) +

µ

2

∥∥∥∥Axk+1 +Bz − y +
1

µ
λk

∥∥∥∥2
2

}
,

• fix x and z, take a dual ascent step on λ:

λk+1 = λk + µk (Axk+1 +Bzk+1 − y) .

The solution of each subproblem is the proximal operator, which
has closed-form solution for structured g and h!
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Alternating Direction Methods of Multipliers (ADMM)

Optimization with Separable Structures

The augmented Lagrangian Lµ(x, z,λ) is:

Lµ(x, z,λ) = g(x) + h(z) + ⟨λ,Ax+Bz − y⟩+ µ

2
∥Ax+Bz − y∥22 .

The alternating directions method of multipliers (ADMM) conducts a
simple, alternating iteration:

zk+1 ∈ argmin
z
Lµ(xk, z,λk), (22)

xk+1 ∈ argmin
x
Lµ(x, zk+1,λk), (23)

λk+1 = λk + µ (Axk+1 +Bzk+1 − y) . (24)

This is also known as the Gauss-Seidel iteration.

ADMM converges at a rate of O(1/k). (proof no picnic6)

6On the Douglas-Rachford splitting method and the proximal point algorithm for
maximal monotone operators. J. Eckstein and D. Bertsekas, 1992.
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Alternating Direction Methods of Multipliers (ADMM)

Example I: Basis Pursuit

Basis pursuit denoising (let z = x):

min
x

1

2
∥Ax− y∥22 + λ ∥x∥1

⇐⇒ min
x,z

1

2
∥Ax− y∥22︸ ︷︷ ︸

g(x)

+ λ ∥z∥1︸ ︷︷ ︸
h(z)

, s.t. x− z = 0.

• Form the augmented Lagrangian:

Lµ(x, z,β) =
1

2
∥Ax− y∥22 + λ ∥z∥1 + ⟨β,x− z⟩+ µ

2
∥x− z∥22 .
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Alternating Direction Methods of Multipliers (ADMM)

Example I: Basis Pursuit Denoising
• Fix zk and βk, find xk+1 via

xk+1 = argmin
x
Lµ(x, zk,βk)

= argmin
x

{
1

2
∥Ax− y∥22 +

µ

2

∥∥∥∥x− zk +
1

µ
βk

∥∥∥∥2
2

}
.

• Fix xk+1 and βk, find zk+1 via

zk+1 = argmin
z
Lµ(xk+1, z,βk)

= argmin
z

{
λ ∥z∥1 +

µ

2

∥∥∥∥xk+1 − z +
1

µ
βk

∥∥∥∥2
2

}
.

• Fix xk+1 and zk+1, take a dual ascent step on β:

βk+1 = βk + µk (xk+1 − zk+1) .
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Alternating Direction Methods of Multipliers (ADMM)

Example I: Basis Pursuit

• Fix zk and βk, find xk+1 via

xk+1 = (ATA+ µI)−1(ATy + µzk − βk)

• Fix xk+1 and βk, find zk+1 via

zk+1 = proxλµ−1∥·∥1

(
xk+1 +

1

µ
βk

)
• Fix xk+1 and zk+1, take a dual ascent step on β:

βk+1 = βk + µk (xk+1 − zk+1) .
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Alternating Direction Methods of Multipliers (ADMM)

Example II: Robust PCA

min
L,S
∥L∥∗ + λ ∥S∥1 , s.t. L+ S = Y .

• Form the augmented Lagrangian:

Lµ(L,S,Λ) = ∥L∥∗ + λ ∥S∥1 + ⟨Λ,L+ S − Y ⟩

+
µ

2
∥L+ S − Y ∥2F .
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Alternating Direction Methods of Multipliers (ADMM)

Example II: Robust PCA

min
L,S
∥L∥∗ + λ ∥S∥1 , s.t. L+ S = Y .

• Fix Sk and Λk, find Lk+1 via

Lk+1 = argmin
L
Lµ(L,Sk,Λk)

= argmin
L

{
∥L∥∗ +

µ

2

∥∥∥∥L+ Sk − Y +
1

µ
Λk

∥∥∥∥2
F

}
= proxµ−1∥·∥∗

(
Y − Sk − µ−1Λk

)
.
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Alternating Direction Methods of Multipliers (ADMM)

Example II: Robust PCA

min
L,S
∥L∥∗ + λ ∥S∥1 , s.t. L+ S = Y .

• Fix Lk+1 and Λk, find Sk+1 via

Sk+1 = argmin
S
Lµ(Lk+1,S,Λk)

= argmin
S

{
λ ∥S∥1 +

µ

2

∥∥∥∥Lk+1 + S − Y +
1

µ
Λk

∥∥∥∥2
F

}
= proxλµ−1∥·∥1

(
Y −Lk+1 − µ−1Λk

)
.
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Alternating Direction Methods of Multipliers (ADMM)

Example II: Robust PCA

• Fix Sk and Λk, find Lk+1 via

Lk+1 = proxµ−1∥·∥∗

(
Y − Sk − µ−1Λk

)
.

• Fix Lk+1 and Λk, find Sk+1 via

Sk+1 = proxλµ−1∥·∥1

(
Y −Lk+1 − µ−1Λk

)
.

• Fix Lk+1 and Sk+1, take a dual ascent step on Λ:

Λk+1 = Λk + µk (Lk+1 + Sk+1 − Y ) .
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Alternating Direction Methods of Multipliers (ADMM)

Example II: Robust PCA
1: Problem: minL,S Lµ(L,S,Λ), given Y , λ, µ > 0.
2: Input: L0,S0,Λ0 ∈ Rm×n.
3: for (k = 0, 1, 2, . . . ,K − 1) do
4: Lk+1 ← proxµ−1∥·∥∗

[
Y − Sk − µ−1Λk

]
.

5: Sk+1 ← proxλµ−1∥·∥1

[
Y −Lk+1 − µ−1Λk

]
.

6: Λk+1 ← Λk + µ(Lk+1 + Sk+1 − Y ).
7: end for
8: Output: L⋆ ← LK ;S⋆ ← SK .
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Alternating Direction Methods of Multipliers (ADMM)

Summary for ADMM

min
x,z

g(x) + h(z), s.t. Ax+Bz = y.

• ADMM is easy to implement and use, and scalable for large-scale
problem.

• ADMM is slow to converge to high accuracy (with O(1/k)
convergence rate).
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Summary & Extensions

1 Motivating Examples for Recovery of Low-Dim Models

2 (Accelerated) Proximal Methods

3 Alternating Direction Methods of Multipliers (ADMM)

4 Summary & Extensions
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Summary & Extensions

Optimization Challenges for Structured Data Recovery
• Challenge of Scale: scale algorithms to when n is very large.

Second order methods =⇒ First order methods...

• Nonsmoothness: first order methods are slow for nonsmooth.

min
x∈Rn

F (x)
.
= f(x)︸︷︷︸

smooth convex

+ g(x).︸ ︷︷ ︸
nonsmooth convex

,

that we deal with proximal gradient method:

O(1/
√
k)︸ ︷︷ ︸

subgradient

=⇒ O(1/k)︸ ︷︷ ︸
proximal gradient

=⇒ O(1/k2)︸ ︷︷ ︸
APG

=⇒ O(e−αk)︸ ︷︷ ︸
RSC

• Equality Constraints with Separable Structures: ADMM

min
x,z

g(x) + h(z), s.t. Ax+Bz = y.
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Summary & Extensions

Other Ideas for Better Scalability

Typical optimization problem: minx f(x) = 1
m

∑m
i=1 hi(x), x ∈ Rn.

Complexity = per iteration cost×# of iterations.

• Block Coordinate Descent reduces dependency on the dimension n:

O(n)→ O(n1/2).

• Stochastic Gradient Descent (with variance reduction) reduces
dependency on sample size m:

O(m)→ O(m1/2).

• Acceleration Schemes reduce the number of iterations k:

O(ϵ−2)→ O(ϵ−1/2).

Nonconvex programs are a different story... (later, Lecture 3).
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Summary & Extensions

Algorithmic Unrolling Beyond LISTA
1: Problem: minx

1
2∥y −Ax∥22 + λ∥x∥1, given y ∈ Rm, A ∈ Rm×n.

2: Input: x0 ∈ Rn and L ≥ λmax(A
∗A).

3: for (k = 0, 1, 2, . . . ,K − 1) do
4: wk ← xk − 1

LA
∗(Axk − y).

5: xk+1 ← softλ/L(wk).
6: end for
7: Output: x⋆ ← xK .

The unrolled iterations resemble
a deep neural network!

We can optimize the optimization path of ISTA using supervised learning7:

wk ← xk −
1

L
A∗(Axk − y) =

(
I − 1

L
A∗A

)
︸ ︷︷ ︸

learnable parameter S

xk +
1

L
A∗Ay︸ ︷︷ ︸

learnable parameter b

7Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun, ICML 2010.
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Summary

Next lecture: Learning Low-dimensional Models via
Nonconvex Optimization.

Thank You! Questions?
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