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Recap for Recovery of Low-dimensional Structures
Parallel developments for sparse vectors and low-rank matrices.

Sparse v.s. Low-rank

Sparse Vector

Low-rank Matrix

Low-dimensionality of

individual signal «

a set of signals X

Compressive sensing

y=Ax

Y = A(X)

Low-dim measure

29 norm |||l

rank(X)

Convex surrogate

¢t norm ||z||;

nuclear norm || X ||,

Success conditions (RIP)

Sor(A) > V2 -1

547‘(A) Z ﬂ_ 1

Random measurements

m = O(klog(n/k))

m = O(nr)

Stable/Inexact recovery

y=Ax+z

Y = AX)+ Z

Phase transition at

Stat. dim. of descent cone: m* = §(D)
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@ Motivating Examples for Recovery of Low-Dim Models
@ (Accelerated) Proximal Methods

© Alternating Direction Methods of Multipliers (ADMM)
O Summary & Extensions
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Motivating Examples for Recovery of Low-Dim Models

Sparse Recovery

-l o -
- | D . n
yERmI H._:*-\.. "y JER
1 N N |
A [ |
Recovering a sparse signal x, from:
Y = A Lo (1)
observation unknown

where A € R™*™ is a linear map.
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Sparse Recovery
¢ Basis pursuit (BP):

min [z, sty
T
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Motivating Examples for Recovery of Low-Dim Models

Sparse Recovery

¢ Basis pursuit (BP):

min |xl|;, st y = Az.
€T

¢ Basis pursuit denoising (BPDN):
min [[zf,, st |y - Az[, <4,
which is equivalent to the lasso problem with properly chosen A:

1 2
min o [ly — Azl + Allz|,
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Motivating Examples for Recovery of Low-Dim Models

Low-Rank Matrix Recovery

Recommendation Ratings:

@ 5 3 ... 7 53 ... 5
B |22 4 42 ... 4
N = Pao .

5 7 ... 7 556 ... 3

. Complete Ratings X
Ra R
Ttems
Observed (Incomplete) Ratings Y
We observe:

Complete ratings:|

-

Observed ratings

where Q = {(4,) | user i has rated product j}.
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Motivating Examples for Recovery of Low-Dim Models

Low-Rank Matrix Recovery

Recommendation Ratings:

Brs s
& |-

-~

2 = Pq )
5 7 ... 7 556 ... 3
H =i Complete Ratings X

Ttems
Observed (Incomplete) Ratings Y

=] F = = DA
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Motivating Examples for Recovery of Low-Dim Models

Low-Rank Matrix Recovery

Recommendation Ratings:

Users

7. ? 55 ... 3
— Complete Ratings X
B A -
Ttems
Observed (Incomplete) Ratings Y

Recovering a low-rank matrix X,:

:A|: XO

unknown

Y

observation

|\ )

where, A : R"1*"2 — R™ is a linear map.
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| Motivating Examples for Recover of Low Dim Mode's
Low-Rank Matrix Recovery
® Nuclear norm minimization:

min [ X[, sty = A[X].

=] & = E DA
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Motivating Examples for Recovery of Low-Dim Models

Low-Rank Matrix Recovery

® Nuclear norm minimization:

min [ X[, sty = A[X].

® Nuclear norm minimization under noise:

min [ X[, st Jly - AX]]|p < &

Qing Qu Scalable Convex Optimization Methods May 24, 2022 8/77



Motivating Examples for Recovery of Low-Dim Models

Low-Rank Matrix Recovery

® Nuclear norm minimization:

min [ X[, sty = A[X].

® Nuclear norm minimization under noise:

min [ X[, st Jly - AX]]|p < &
Similarly, the problem is equivalent to
1 2
min o |ly — A[X][p + A X,

for properly chosen A > 0.
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Motivating Examples for Recovery of Low-Dim Models

Low-rank & Sparse Decomposition

Robustly recover a low-rank matrix L, from:

— L, + S, (3)

observation unknown low-rank unknown sparse

where L, € R™*"2 js low-rank, and S, € R™*"2 s sparse.
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Low-rank & Sparse Decomposition

¢ Principal component pursuit (PCP):

miél |\L|l, + XS]y, st. Y = L+S.

=] & = E DA
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Motivating Examples for Recovery of Low-Dim Models

Low-rank & Sparse Decomposition

¢ Principal component pursuit (PCP):

min ||, + A|S|l,, st Y = L+S§.
LS

e Stable principal component pursuit (Stable PCP):

. /_1« oy 2
min L]+ ST+ 5 1Y -2 S|
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Motivating Examples for Recovery of Low-Dim Models

Convex Nonsmooth Problems

min F(z) = f(z) + g(=)

xeR" smooth  nonsmooth

® Basis pursuit denoising:

1

fl@) =3 lly - Azl3, g(@) = Al .

e Stable low-rank matrix recovery:

1

F(X)=5lly - AX]IF, 9(X) = AlIX], -
e Stable PCP:
"
L8 =35Y -L- S|%,  9(L,8) =L, + S|, -
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Motivating Examples for Recovery of Low-Dim Models

Optimization Challenges for Structured Data Recovery

mn Fl) = f@@) + gla) *)
xe —~ ——

smooth convex  nonsmooth convex

Challenge of Scale: scale algorithms to when n is very large.
Second order methods == First order methods... (5)
® Nonsmoothness: first order methods are slow for nonsmooth.

Ok = OQ1/k) = O01/k*) = 0> %) (6)

Equality Constraints: augmented Lagrange multiplier (ALM).

Separable Structures: alternating direction of multipliers method
(ADMM).
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Gradient Descent for Smooth Functions, [Cauchy, 1847]

For minimizing a smooth convex function (App. B):
min f(x), « € C (a convex set), (7)

conduct local gradient descent search (App. D):

X1 = Pe (xp — 1V f(xp)), (8)

where a rule of thumb: 73, &~ 1/L, where L the Lipschitz constant.

- figure courtesy of Prof. Carlos Fernandez of NYU.

Qing Qu Scalable Convex Optimization Methods May 24, 2022 13 /77



(Projected) Subgradient Methods

min  F(x) , st x e C

T honsmooth convex constraint

® The loss function F'(-) is nonsmooth: cannot apply gradient descent,
as VF(xo) might not exist.
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(Projected) Subgradient Methods

min  F(x) , st x e C

T honsmooth convex constraint

® The loss function F'(-) is nonsmooth: cannot apply gradient descent,
as VF(xo) might not exist.

® Similar to GD, a natural choice is the "subgradient-based method”:

xry1 = Pe(xr — 7% 9k),
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(Projected) Subgradient Methods

min  F(x) , st x e C

T honsmooth convex constraint

® The loss function F'(-) is nonsmooth: cannot apply gradient descent,
as VF(xo) might not exist.

® Similar to GD, a natural choice is the "subgradient-based method”:

xry1 = Pe(xr — 7% 9k),

® Here, g, € OF (x) is any subgradient of F(-) at xy;
Pec(+) is the projection onto the set C.
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Subgradient & Subdifferential

Q_/ v
o Zo

f(@o) + (V (o), @ — @) f(@o) +(g,x —x0), g €df(mo)

differentiable nondifferentiable

Definition (Subgradient)

Let F': R™ — R be convex. A subgradient of F' at xq is any g satisfying

F(x) > F(xzo)+ (g,x —xp), VxeR"
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Subgradient & Subdifferential

Q_/ v
o Zo

f(@o) + (V (o), @ — @) f(@o) +(g,x —x0), g €df(mo)

differentiable nondifferentiable

Definition (Subdifferential)

Subdifferential is the set of all subgradients of F'(-) at xy:

OF (xzg) = {g| F(x) > F(xo) + (g, — xp), V& € R"}.
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Motivating Examples for Recovery of Low-Dim Models

Examples of Subgradient

f@) =zl of (=)
% 05 ‘% 05 1 gs 05 zn 05 1
® Absolute value function F(z) = |z|:
{1} x>0,
OF(z) = < [-1,1] =0,
{-1} z<O.

=] & = E DA
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Motivating Examples for Recovery of Low-Dim Models

Examples of Subgradient

f@) =zl of (=)
.6 )
% 05 ‘% 05 1 gs 05 zn 05 1
® Absolute value function F(z) = |z|:
{1} x>0,
OF (z) =

[_17 1]

z =0,
{-1} z<O.
® (i-norm F(x) = ||z|ly = 323 |wil:

OF(z) = OF(x1) % --- x OF(z), x € R™.
o <5 = E T 9ac



Slow Convergence of the Subgradient Method

Suppose C = R", and the subgradient method
LTg+1 = Lk — Tk Gk,

with 75 being the stepsize and gy € OF (x) is a subgradient of F at xy.
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Slow Convergence of the Subgradient Method

Suppose C = R", and the subgradient method
LTg+1 = Lk — Tk Gk,
with 7 being the stepsize and g, € OF (xy) is a subgradient of F' at .

Theorem (O(1/Vk) convergence of subgradient methods)

Suppose F : R"™ — R is L-Lipschitz, and the optimal function value is Fy.

Choose the stepsize satisfying 1, = T"; _”I;*
kll2

, then we have the convergence
rate

RL
Fes - F* S T
best,k \/E

where Fyegt ), = ming<;<i F(x;) and R > ||xg — 4|5
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Motiva

Comparison of Convergence

Objective Function Value

Objective Function Value
8

Examples for Recovery of Lo

m Models

1

L |
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lteration Number

Solution Error Norm
T
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L
150 200 250

Iteration Number

300 350 400 450 500

1 2
min F(x) = = |y — Az|;+ ||z, .
min F(z) = |1y — Azl + Al
lhttps ://github.com/RoyiAvital/Projects/tree/master/Optimization/LsLiSolversAnalysis = HAE
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https://github.com/RoyiAvital/Projects/tree/master/Optimization/LsL1SolversAnalysis

Motivating Examples for Recovery of Low-Dim Models

Comparison of Convergence?

Objective Function Value vs. Optimal Value (CVX)
T T

T

[ Sub Gradient

e Smccthing (Huber Loss)
Proximal Gradient

e Proximal Gradient - Line Search

e Proximal Gradient - Accelerated

e Proximal Gradient - Accslerated + Line Search

Objective Function Value

I I I
50 100 150 200 250 300 350 400 450 500
Iteration Number
Solution Error Norm
T T T
e e E——
—su
e Stocithing (Huber Loss)
Proximal Gradient
PRI —— Proximal Gradient - Line Search
| Proximal Gradient - Accelerated
- Proximal Gradient - Accelerated + Line Search ~

e ADMM
——RLS

—)

Objective Function Value

0 L L L L L
50 100 150 200 250 300 350 400 450 500
Iteration Number

® For recovery of low-dimensional models, generic solvers are slow
(e.g., subgradient method).

2
https://github.com/RoyiAvital/Projects/tree/master/Optimization/LsL1SolversAnalysis
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@ Motivating Examples for Recovery of Low-Dim Models

@ (Accelerated) Proximal Methods

O Summary & Extensions
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(Accelerated) Proximal Methods

Composite Nonsmooth Problems

min Fz) = f(z) + g(a)

xzeR" smooth  nonsmooth

® The function f(-) : R” — R is convex, continuously differentiable,
and L-smooth with

|Vf(@)-Vf@)|, < L|z—-2|,, Ve, ' R

® g(-) : R" — R is convex but possibly nonsmooth.
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(Accelerated) Proximal Methods

Composite Nonsmooth Problems

min F(z) = f(z) + g(=)

xeR" smooth  nonsmooth

® Basis pursuit denoising:

1

fl@) =3 lly - Azl3, g(@) = Al .

e Stable low-rank matrix recovery:

1

F(X)=5lly - AX]IF, 9(X) = AlIX], -
e Stable PCP:
"
L8 =35Y -L- S|%,  9(L,8) =L, + S|, -
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(Accelerated) Proximal Methods

Gradient Descent, [Cauchy, 1847]

For minimizing a smooth convex function (App. B):
min f(x), « € C(a convex set),

conduct local gradient descent search (App. D):

i1 =xk — V(TR),

where a rule of thumb: v ~ 1/L, where L the Lipschitz constant (why?).

@)

- figure courtesy of Prof. Carlos Fernandez of NYU.
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Gradient Descent
For f(x) has L-Lipschitz continuous gradients if

IVf(') = Vi@)2 < Lz’ -z,

va' x € R".

=] & = E DA
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(Accelerated) Proximal Methods

Gradient Descent

For f(x) has L-Lipschitz continuous gradients if
IVf(@) = Vi@)2 < Lz’ — x|z, Vo', xR (9)

This gives a matching quadratic upper bound:

f&) < f@ = s
) L 2
= fl@)+(Vf(x), ' —xz)+ = H:c' — x|,

= —”93 — :n—TVf H2+h ) PR
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(Accelerated) Proximal Methods

Gradient Descent

For f(x) has L-Lipschitz continuous gradients if
IVf(@) = Vi@)2 < Lz’ — x|z, Vo', xR (9)
This gives a matching quadratic upper bound:
f@) < f@ ) s
= J@)+(Vi@)a o)+ o o
= Ul (@ 1Vi(a H2+h z).
Take a step to the minimizer of this bound:
Th+1 = al”gﬂglgi,nf(wlwk) = xf — %Vf(l’k)-
Fact: this gives a convergence rate of O(1/k).
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(Accelerated) Proximal Methods

Proximal Gradient Descent
The same (local) strategy for a convex function with a nonsmooth term:

min Fz) = fz) + g(a)
zeR™ smooth  nonsmooth
Upper bound:
. L
Flz,ap) = fop) + (Vf(@r), 2 —ap) + 5 llz - k|5 + g()

= S lle = (@x— TVS@)IE+ o) + how)
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(Accelerated) Proximal Methods

Proximal Gradient Descent

The same (local) strategy for a convex function with a nonsmooth term:

min F(z) = f(2) + g(o)

smooth nonsmooth

Upper bound:
Plam) = ) + (V@) — ) + & o - 2l +g(a)
= Dl (o VS @)IE + o(@) + hla)
A step to the minimizer of the bound F(w,mk):

L 1
Tyl = argﬂgﬂ §H1’ — (zr — va(fck)) H; +g(x)

-~

Wi

L
= |argmin - & — wi[|; + g(x).
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(Accelerated) Proximal Methods

Proximal Operator

Definition (Proximal Operator)

The proximal operator of a convex function g(-) : R" — R is

(1 )
pros,(w) i= min {3 lo ~ wl + g(o)
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(Accelerated) Proximal Methods

Proximal Operator

Definition (Proximal Operator)

The proximal operator of a convex function g(-) : R" — R is

(1 )
pros,(w) i= min {3 lo ~ wl + g(o)

Thus, the proximal iteration can be written as

. [L 2
Tpp1 = argming o |z — w5 + g(x)
= proxg/L('wk)

For many structured low-dim problems, the proximal mapping has
closed-form and can be computed efficiently!
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(Accelerated) Proximal Methods

Proximal Operator

Definition (Proximal Operator)

The proximal operator of a convex function g(-) : R" — R is
i d L 2
proxg(w) = minJ 7 [lz —wll; +g()

Example: /1-norm

® g(x) =t||z||,, prox,(-) is the soft-thresholding operator soft,(-):

w; — t W; 2 t
[proxg(w)]i = [soft;(w)], = ¢ 0 lw;| <t
w; +t w; < —1
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(Accelerated) Proximal Methods

Proximal Operator
How to prove it?

® Subgradient characterization: for any convex function ' : R" — R,

F(xz,) = m'ﬁgn Flx) <= 0€JF(x,)
TeR™
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(Accelerated) Proximal Methods

Proximal Operator
How to prove it?

® Subgradient characterization: for any convex function ' : R" — R,

F(xz,) = m'ﬁ@n Flx) <= 0€JF(x,)
xreR"

® Proof ideas of the proximal operator for g(x) =t ||xz||;:
The objective function reaches minimum when the subdifferential of

1
Fla) = sl - wl}+ e,

contains zero, that is

T; —w; + 1, z; >0
0c (x—w)+td|x|1 = —w +t[-1,1], =0, i=1,...,n.
T; —w; —t, z; <0
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(Accelerated) Proximal Methods

Proximal Operator

Thresholding:
rmft(z,f) y = soft(z,7), y > 0
0 _/
T [0 T 7 0T * N

Example: /;-norm

® g(x) =t||z|,, prox,(-) is the soft-thresholding operator:

w; — t W; Z t
[proxg(w)]i = [softy(w)]; = <0 lw;| <t
w; +t w; < —1
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(Accelerated) Proximal Methods

Proximal Operator

Definition (Proximal Operator)

The proximal operator of a convex function g(-) : R — R is

: 1 2
prox, (W) := UL {5 X — W% +9(X)}

Example: nuclear norm

° g(W)=t|W]||, with W =UXV, then prox,(-) is the singular
value thresholding operator:

prox, (W) = Usoft,(Z)V''.
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(Accelerated) Proximal Methods

Proximal Gradient Algorithm

Proximal Gradient (PG)
Problem Class: min, F(x) = f(x) + g(x)

f,9 :R™ = R convex, Vf L-Lipschitz and g nonsmooth.
Basic Iteration: set g € R".
Repeat:
1
Wy, < T — ZVf(a:k),
Tiy1 4 Proxg, r[wy].
Convergence Guarantee:

F(xy) — F(x.) converges at a rate of O(1/k).
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(Accelerated) Proximal Methods

Example: Proximal Gradient for Basis Pursuit Denoising

Iterative soft-thresholding algorithm (ISTA):

1: Problem: ming 1|ly — Az||3 + ||, given y € R™, A € R™*".
2: Input: zp € R"™ and L > \pax(A*A).

3: for (k=0,1,2,...,K — 1) do

4wy < T — %A*(Amk —y).

5 Tyl & SOft)\/L(wk).

6: end for

7: Output: x, « xi.

3Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun,
ICML 2010. Also known as the Learned ISTA (LISTA).
5



(Accelerated) Proximal Methods

Example: Proximal Gradient for Basis Pursuit Denoising

Iterative soft-thresholding algorithm (ISTA):

1: Problem: ming 1|ly — Az||3 + ||, given y € R™, A € R™*".
2: Input: &y € R" and L > Apax(A*A).

3 for (k=0,1,2,...,K — 1) do

4wy < T — %A*(A:I:;,C —y).

5 Tyl & SOft)\/L(wk).

6: end for

7: Output: x, « xi.

The unrolled iterations
resemble a deep neural Deep

N |
network!3 Network
Module

Relu
0

3Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun,
ICML 2010. Also known as the Learned ISTA (LISTA).
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(Accelerated) Proximal Methods

From ISTA to Learned ISTA (LISTA)
1: Problem: min, 5|y — Az|3 + A||z||1, given y € R™, A € R™*™.
2: Input: ¢y € R™ and L > \ax(A*A).
3 for (k=0,1,2,...,K — 1) do
4w < T — %A*(Amk —y).
5 Tyl < SOft)\/L('wk).
6: end for
7: Output: x, « xi.

;

0

. . /,

The unrolled iterations resemble Doep ))(:
)

Neural
Network

a deep neural network! Moo A

RelLu
e
:

We can optimize the optimization path of ISTA using supervised learning*:

1 1 1
wy, < T — EA*(A:I;;~C —y) = (I — EA*A) Ty + ZA*Ay

—_—— —_——
learnable parameter S learnable parameter b

4Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun;-ICML 2010.
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(Accelerated) Proximal Methods

Example: Proximal Gradient for Basis Pursuit Denoising

Iterative soft-thresholding algorithm (ISTA):
1: Problem: min, i|ly — Az|3 + \|z|1, given y € R™, A € R™*™.
2: Input: &y € R" and L > Apax(A*A).

3: for (k=0,1,2,...,K — 1) do

4wy < T — %A*(Awk —y).
5
6
7

0.50
I

T4 ¢ softy/r(wg).
: end for
: Output: z, < xx.

—

0.20
1

f-fstar
0.10
I

Proximal Gradient vs.
Subgradient Method.

0.05
1

S
—— Subgradient method Nz
—— Proximal gradient

0 200 400 600 800 1000

0.02
1

k
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Can We Further Accelerate Convergence?
R S, =
e DI~ s
” gradient descent
Recall gradient descent for smooth min, f(x):

heavy-ball method
Tpp1 = — oV f(zy).

=] & = E DA
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Can We Further Accelerate Convergence?
g e P

Recall gradient descent for smooth ming f(x):

Tpp1 = — oV f(zy).
The heavy ball method [Polyak, 1964]

i1 = — aVf(xg) + ﬁ(:ck - $k—1) .

momentum

=] & = E DA
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(Accelerated) Proximal Methods

Can We Further Accelerate Convergence?

RN M

Sk ozt

7 rgrrraariéht d;s;cehtr 7
Recall gradient descent for smooth ming f(x):

Tpp1 = — oV f(zy).

The heavy ball method [Polyak, 1964]

Tpp1 = — oV f(zk) + B(xk — 1) -
momentum
It is also called the momentum method:
® Basis for popular ADAM for train deep neural networks.
® Worst convergence rate is still O(1/k), yet best possible is O(1/k?).
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Accelerated Gradient Descent [Nesterov, 1983]
Generate an auxiliary point pj1 of the form:

Pit1 = T+ Brs1 (T — 2i—1).
Move from xj to pr+1, and gradient descend from it:

Tp4+1 = Pk+1 — & Vf(Pk+1)

a stroke of genius

=] & = E DA
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__ (Accelented) Proimal Methods |
Accelerated Gradient Descent [Nesterov, 1983]

Generate an auxiliary point pj1 of the form:
D1 = @k + Bt (r — ).
Move from xj to pr+1, and gradient descend from it:

Tp4+1 = Pk+1 — & Vf(pk;—l—l)
~———

a stroke of genius

The weights « and {S;11} are carefully chosen:

14 /1+482 o1
k i a=1/L.

tr=1, tpp = 5 Br+1 = )
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__ (Accelented) Proimal Methods |
Accelerated Gradient Descent [Nesterov, 1983]

Generate an auxiliary point pj1 of the form:
D1 = @k + Bt (r — ).
Move from xj to pr+1, and gradient descend from it:

Thi1 = Prt1 — @ V[(Drt1)
———

a stroke of genius

The weights « and {S;11} are carefully chosen:

14 /1+482 o1
k i a=1/L.

=1, tpg=—J3 " -
1 ) k+1 2 s Bk-ﬁ-l tk-}-l 3

® We may not always have f(xri1) < f(xx).

e Achieve optimal convergence rate O(1/k?) among 1st order methods.

Qing Qu Scalable Convex Optimization Methods May 24, 2022 3777



(Accelerated) Proximal Methods

Accelerated Proximal Gradient for Nonsmooth Problems
Accelerated Proximal Gradient (APG)

Problem Class: min, F'(z) = f(x) + g(x),
f, g convex, with V f L-Lipschitz and g nonsmooth.

Basic Iteration: set g € R", p; = ®1 <+ xg, and t; <« 1.
Repeat for k =1,2,..., K:

1—|—\/1—{—4tk2 tpy — 1
—2 .

y o Brg1
k1

tk+1 —
Pit1 < Tk + Bt (r — 1)

1
Tg+1 < ProxXg [pkH - zvf(pkﬂ) ]

~
proximal gradient

Convergence Guarantee:
F(x) — F(x,) converges at a rate of O(1/k?).

Qing Qu Scalable Convex Optimization Methods May 24, 2022 38/77



(Accelerated) Proximal Methods

Proximal Gradient versus Accelerated Proximal Gradient

Gradient Descent vs Accelerated Gradient Descent

— GD
— AccGD| |

10

102}

10% | 1

error

10° | E

wrl ‘ mmﬂﬂﬂnmﬂn

1000 2000 3000 4000 5000
iterations
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(Accelerated) Proximal Methods

Example |: APG for Basis Pursuit Denoising

FISTA: Accelerated Proximal Gradient (APG) for LASSO

1: Problem: min, ||y — Az||3 + A|z|1, given y € R™, A € R™*",
2: Input: zp € R", p; = @1 + @, and t1 < 1, and L > A\ax(A*A).
3 for (k=1,2,...,K —1) do
1+4+/1+4¢2 _
ber1 ¢ =55 Bt i’zﬂl

4
5 Pry1 — Tk + Brp1 (e — Tp—1).

6 Wiyl < Pry1 — A (Apry1 — y).
7: Tyl < SOft[’wk_H, )\/L]

8: end for

9: Qutput: x, < xk.
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ISTA vs. FISTA
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(Accelerated) Proximal Methods

Example II: APG for Stable PCP

Accelerated Proximal Gradient (APG) for Stable PCP

1: Problem: ming g || L« + A||S|li + §|Y — L — S||%, given Y.
2: Input: Ly, Sy € Rmxn, Pls =81« Sy, PlL =L+ Ly, t; + 1.
3: for (k=1,2,. —1) do

1+\/1+4t2
4 g » Bre1 tk+11
5. PL, « L + Bi1 (L — Li—1); PPy < Sk + Brg1 (Sk — Sk-1).
6: Wiy <Y — PI§+1 and compute SVD: W4, = Uk+12k+1vk*+1
7: Ly Uk+150ft[2k+1, 1//1]‘/;:_1; Sk+1 — SOft[( k+1) )\/,u]
8: end for
9: Qutput: L, < Lg:S, + Sk.
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(Accelerated) Proximal Methods

GD for Strongly Convex Problems
A troubling fact though: Not supposed to be this fast!
Reason? Consider minimizing a L-Lipschitz continuous function
min f(x), =eR"™ (10)
Assume f(x) is u-strongly convex:
f((@) > f(2) + (Vf(@).2' - 2) + T2’ — =3 (1)
This implies (assuming f is twice differentiable):

0 < ul <V%f(x) < LI
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(Accelerated) Proximal Methods

Convergence of GD for Strongly Convex Problems

Theorem (see Appendix D).

f(x): p-strongly convex and L-Lipschitz continuous.

For gradient descent with a step size t = LLW we have:

k
K—1
o= ala < (557 oo -2l (12

where k = L/u and @, is the minimizer.
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(Accelerated) Proximal Methods

Convergence of GD for Strongly Convex Problems

Theorem (see Appendix D).

f(x): p-strongly convex and L-Lipschitz continuous.

For gradient descent with a step size t = LLW we have:

k
K—1
o= ala < (557 oo -2l (12

where k = L/u and @, is the minimizer.

Convergence Rates for Gradient Descent:
©® f non-smooth: O(1/Vk).

@® f differentiable: O(1/k).

® f smooth, Vf Lipschitz: O(1/k?).

O f strongly convex: O(e™).
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(Accelerated) Proximal Methods

Convergence of Restricted Strong Convex Problems

n=2500,w=0.25,q=0 @ =16.3069 ,w =025 ,4=0
~-d-5000 ~-d=5000
0-d=10000 ©-d=10000)
|-m-d-20000 = -m-d-20000)
E
g - \
£
Z 4 = 4
] ]
s 9 =
2 ~ h\;\ H p \
10 \ e 10 \

0 100 150 50 100 150
Tteration Count Tteration Count,

(a) (b)

Figure 1. Convergence rates of projected gradient descent in application to Lasso programs (f1-
constrained least-squares). Each panel shows the log optimization error log || — 9] versus the itera-
tion number ¢. Panel (a) shows three curves, corresponding to dimensions d € {5000, 10000, 20000},
sparsity s = [V/d], and all with the same sample size n = 2500. All cases show geometric con-
vergence, but the rate for larger problems becomes progressively slower. (b) For an appropriately
rescaled sample size (o = ;7). all three convergence rates should be roughly the same, as predicted
by the theory.

® Fact: Structured signal recovery problems such as LASSO and PCP
satisfy restricted strong convexity.
® Hence, gradlent descent enjoys globally linear convergence up to

he model.®
®Fast global convergence of gradient methods for high-dimensional statistical
recovery, Agarwal, Negahban, Wainwright, NIPS 2010.
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@ Motivating Examples for Recovery of Low-Dim Models

@ (Accelerated) Proximal Methods

O Summary & Extensions
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Alternating Direction Methods of Multipliers (ADMM)
Optimization Challenges for Structured Data Recovery
min F(z) = f(z) + g(x). (13)
—~—

xeR” ——"

smooth convex  nonsmooth convex

Challenge of Scale: scale algorithms to when n is very large.
Second order methods = First order methods... (14)
® Nonsmoothness: first order methods are slow for nonsmooth.

O1/VE) = OQ1/k) = O1/k?) = 0(e %) (15)

Equality Constraints: augmented Lagrange multiplier (ALM).

Separable Structures: alternating direction of multipliers method
(ADMM).
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Alternating Direction Methods of Multipliers (ADMM)

Equality Constrained Problems with Separable Structures

Let us consider the two-block equality constrained problem:

min g(x) + h(z), st. Ax+ Bz = y.
T,z

)

® g:R"— Rand h:R"”+— R are (probably nonsmooth) convex
functions.

® A and B are matrices and y € range([A | B]), so that the problem

is feasible.
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Alternating Direction Methods of Multipliers (ADMM)

Constrained Nonsmooth Problem (Examples)

min g(x)+ h(z), st. Ax+ Bz = y.

® Basis pursuit denoising (let z = x):
1 2
min o Az —yll; + A=l
1
— min _|[Az —y|5 + \[z]l;, st x—2z = 0.
.z 2

~——
g(x) h(z)
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Constrained Nonsmooth Problem (Examples)
min g(x) + h(z), st. Ax+ Bz = y.
x,z
® Basis pursuit denoising (let z = x):

1 2
min o Az —yll; + A=l
1
<= min 3 |Az —y|5 + \|z]l;,, st x—2z = 0.
x,z N——
|
g(@) ")
¢ Stable low-rank matrix recovery (let Z = X):

1 )
min 5 [ A(X) —ylly + AIX],

1
— min - [|JAX)-yl5 + A|Z|,, st X-Z = 0.
X,Z 2 ——

|
9(X) nZ)
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Alternating Direction Methods of Multipliers (ADMM)

Examples: Constrained Nonsmooth Problem

min g(x) + h(z), st. Ax+ Bz = y.

)

® Robust PCA

min |||, + \|S|l,, st L+S =Y.
LS — e —

9(L) h(S)
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Alternating Direction Methods of Multipliers (ADMM)

Linear Equality Constrained Optimization
Let us first consider a simpler one-block constrained problem:
min g(x) subjectto Az =y, (16)

where
® g:R" — Ris a (probably nonsmooth) convex function,
® A cR™™and y € range(A) (so that the problem is feasible).
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Alternating Direction Methods of Multipliers (ADMM)
Linear Equality Constrained Optimization
Let us first consider a simpler one-block constrained problem:
mwin g(x) subjectto Ax =y, (16)

where

® g:R" — Ris a (probably nonsmooth) convex function,

® A cR™™and y € range(A) (so that the problem is feasible).
A Natural Attempt: solve the unconstrained by penalizing the constraint:

&(pu) = argmin g(x) + 5 ||Ax — y||3 for a large p. (17)
r

® Pros: As u — +o00, () — x4 (the “continuation method").
® Cons: The rate of convergence depends on L = p||A||3.
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Alternating Direction Methods of Multipliers (ADMM)

A More Principled Approach via Lagrangian

Definition (The Lagrange Duality)

The Lagrangian function of the constrained problem (16):
L(x,A) =g(x) + (N Az — y),

where A € R™ is a vector of Lagrange multipliers. This gives a dual
function:
d(A) =inf g(x) + (A, Az — y).
X
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Alternating Direction Methods of Multipliers (ADMM)

A More Principled Approach via Lagrangian

Definition (The Lagrange Duality)

The Lagrangian function of the constrained problem (16):
L(x,A) =g(x) + (N Az — y),

where A € R™ is a vector of Lagrange multipliers. This gives a dual
function:
d(A) =inf g(x) + (A, Az — y).
X

Fact (credited to Lagrange): 3\, such that the optimal solution (x,, A.)
is a saddle point of the Lagrangian:

supinf £(x, A) = supinf g(x) + (A, Ax — y) = supd(A).
Az AT A
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Dual Ascent Algorithm for the Lagrangian
Fact: If
z'(X) = argmin g(z) + (X, Az — y),
x

then Az’(X\) — y is a gradient Vd(\) of the concave dual function d(X)
at A
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Dual Ascent Algorithm for the Lagrangian

Fact: If
z'(X) = argmin g(z) + (X, Az — y),
xr

then Az’(X\) — y is a gradient Vd(\) of the concave dual function d(X)
at A

A Natural Attempt to find the saddle point (x,, A.) is via dual ascent:

Tpr1 = argmin L(x, Ag), (18)
€
Aer1 = Mt lp1(Axpy — ). (19)

® For certain problem classes, this converges to the optimal (., Ay).

® However, unfortunately it fails for problems in our settings.
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An Example of Failure
Consider the basis pursuit problem:
m:gn |lxz|l,, st Ax = y.
We have:
d(X) = igf x|, + (N, Az —y) = iIalzf L(x, ).
The dual ascent algorithm:
Tpt1 = argmwinﬁ(:z:,)\k)

kg1 = g+ 1 (A — ).

® For certain problem classes, dual ascent yields efficient convergent
algorithms to an optimal primal-dual solution (@, A,).

® However, it may fail for problems in structured signal recovery.

Qing Qu Scalable Convex Optimization Methods May 24, 2022 54 /77



Alternating Direction Methods of Multipliers (ADMM)

An Example of Failure

Consider the basis pursuit problem:
min ||z||;, st Ax = y.
xT

One can show that the dual function

o [aTAl >

d(A) = inf A Az —y) =
O = inf llall + (A Az~ y) {—<A,y> |47 <1

Whenever the dual ascent step (19) happens to produce a A such that
|A* Al > 1, the algorithm will break down.
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Alternating Direction Methods of Multipliers (ADMM)

An Example of Failure

Consider the basis pursuit problem:

min ||z||;, st Ax = y.
xT

One can show that the dual function

o [aTAl >

d(A) = inf A Az —y) =
) = inf o], + (A Az~ y) {—<A,y> a7l <1

Whenever the dual ascent step (19) happens to produce a A such that
|A* Al > 1, the algorithm will break down.

The reason is g(x) = ||z||, here is not “strongly” convex enough to
dominate the linear term (A, Ax).
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Alternating Direction Methods of Multipliers (ADMM)

Remedy: Augmented Lagrangian

Definition (Augmented Lagrangian Function [Hestenes'69, Powell'69])

The augmented Lagrangian function is defined as
Lu@A) = g(@) + (A Az —y) + &l Az—y|3,

where p > 0 is a penalty parameter.

The augmented Lagrangian can be regarded as the Lagrangian for

min g(z) + £ Az —y[3, st Az =y,

Ve
strongly convex

which has the same optimal solution as the original un-penalized problem.
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Augmented Lagrange Multiplier

Apply dual ascent to £, (x, ) with a particular step size t41 = p,
Try1 € argmin L,(x, Ag), (20)
€
A1 = A+ p(Azpy —y). (21)

Fact: ;. always minimizes the unaugmented Lagrangian L(x, Ax11) at
A = Ap11, because:

0 € OLu(®ri1,Ap),
= 0g(xpi1) + A" + pA™ (A —y),
= 09(xry1) + A" XNpp1,
= 8£($k+1,/\k+1).

Ak+1 is always feasible, no bad behaviors!
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Alternating Direction Methods of Multipliers (ADMM)

Augmented Lagrange Multiplier

Augmented Lagrange Multipler (ALM)

Problem Class: min, g(x) subjectto Az =wy.
with g : R™ — R convex and coercive, y € range(A).

Basic Iteration: set
Lu(x ) = g(x) + (X, Az —y) + 4 | Az — y|3 .

Repeat:
Ty € argmin L,(x, Ag),
X

A1 = Ak + i (A — y).

Convergence Guarantee:

{x1} converges to an optimal solution at a rate O(1/k).

Qing Qu Scalable Convex Optimization Methods May 24, 2022 58 /77



Alternating Direction Methods of Multipliers (ADMM)

Example: ALM for Basis Pursuit

Augmented Lagrange Multipler (ALM) for BP

1. Problem: ming ||x||; subject to y = Az,
given y € R™ and A € R™*"™. The augmented Lagrangian is:

Lu(@, ) = ||lz| + (A, Az —y) + & | Az — y |2

: Input: &y € R™, Ag € R™, and § > 1.

: for (k=0,1,2,...,K —1) do
Ty < argmin L, (x, M) using APG.
Akt1 < Ap + pp(Azp — y).
fk1 < min{ Bk, fimax -

end for

: Output: x, < xk.

Sl R -
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Application of ALM to the Two-Block Problem

min g(x)+ h(z), st. Ax+ Bz = y.

)

® Form the augmented Lagrangian
Ly(x,z,\) =g(x)+h(z)+ (Ax+ Bz -y, )
+ g |Ax + Bz — y||§
® Solve the problem via
(Trt1, Zk+1) € arglgizn L,(x,z,A;), (could be expensive)

Air1 = M + pp (Axpy + Bz — y).
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Alternating Direction Methods of Multipliers (ADMM)

Application of ALM to the Two-Block Problem

min g(x) + h(z), st. Ax+ Bz = y.

)

® Form the augmented Lagrangian
Ly(x,z,\) =g(x)+h(z)+ (Ax+ Bz -y, )
+ g |Ax + Bz — y||§
® Solve the problem via
(Tgy1, 2K11) € arglgizn L,(x,z,A;), (could be expensive)
Ait1 = g + i (Azpp + Bz — y).

The primal subproblem for x does not have closed-form and could
be expensive to solve.
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Alternating Directions Method of Multipliers (ADMM)

min g(x) + h(z), st. Ax+ Bz = y.
T,z

)

Remedy for solving min, . £, (x,z, Ag):

® fix z and A, minimize x:
Tp+1 € argmwin L (x, 2, ML),
e fix & and A\, minimize z:
Zpe1 € argmin Ly(2ki1, 2, Ap),
® fix x and z, take a dual ascent step on A:
Ait1 = A+ VAL (Thg1, Zr41, A).
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Solutions for Subproblems via Proximal Operators

® fix z and A\, minimize x:

2

)
2
2

)
2

1
Tp41 = argn%cin {9(33) + g HA:n + Bz, —y+ ,L_L)\k

e fix x and A\, minimize z:

1
Zk+1 = argmzin {h(z) + g HAe’L‘k—H +Bz—-y+ ;Ak

® fix x and z, take a dual ascent step on A:

Air1 = A + pp (Axpyr + B2y — y).
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Alternating Direction Methods of Multipliers (ADMM)

Solutions for Subproblems via Proximal Operators

® fix z and A\, minimize x:

2

)
2
2

)
2

1
Lh+1 = al“gﬁgn {9(113) + g HAw + Bz, —y+ ;)\k

e fix x and A\, minimize z:

1
Zk+1 = argmzin {h(z) + g HAe’L‘k+1 +Bz—-y+ ;Ak

® fix x and z, take a dual ascent step on A:
Air1 = A + pp (Axpyr + B2y — y).

The solution of each subproblem is the proximal operator, which
has closed-form solution for structured g and h!
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Qing Qu Scalable Convex Optimization Methods

Alternating Direction Methods of Multipliers (ADMM)

Optimization with Separable Structures

The augmented Lagrangian £, (x, z, A) is:

L,(x,z,\)=g(x)+h(z)+ (N Az + Bz —y) + % |Az + Bz —y|f3.

The alternating directions method of multipliers (ADMM) conducts a
simple, alternating iteration:

Zr1 € argmin L, (xg, 2, Ag), (22)
Tppr € argmin £,(x, 211, Ak), (23)
Ait1 = Mo+ pu(Azgi + Bz —vy). (24)

This is also known as the Gauss-Seidel iteration.

ADMM converges at a rate of O(1/k). (proof no picnic®)

50n the Douglas-Rachford splitting method and the proximal point algorithm for
maximal monotone operators. J. Eckstein and D. Bertsekas;-1992:
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Alternating Direction Methods of Multipliers (ADMM)

Example I: Basis Pursuit

Basis pursuit denoising (let z = x):

1 2
min - Az~ ylf + Az,

1
< min - ||[Az —y[5 + \z];, st z—z = 0.
z,z 2 ——r
e
g(x) h(z)

® Form the augmented Lagrangian:

1 1%
Lu(x,z,B) = 3 Az -y + Azl + (8,2 — ) + 5 Iz — z|3-

Qing Qu Scalable Convex Optimization Methods
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Alternating Direction Methods of Multipliers (ADMM)

Example |: Basis Pursuit Denoising

® Fix z and B, find &y via

Tpy = argrr;in L, (z,z, Br)

T —zp+ ,Bk

arg min {— Az —y|5 + 2

)
)

® Fix xp+1 and By, find zp41 via

Zk+1 = argmzin E,u(wk-l-lyzaﬁk)

= argmin {)\ llz]l; +
z

Tyl — 2+ =B
L

® Fix xj4; and 2541, take a dual ascent step on 3:
Brr1 = B + ik (Ths1 — Zk41) -
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Alternating Direction Methods of Multipliers (ADMM)

Example I: Basis Pursuit

® Fix z; and (g, find &gy via
— (AT —1( AT
Tp1 = (AT A+ pul)” (A y + pzi — Br)
® Fix xxy1 and By, find 24 via
1
Zk+1 = ProXy,—1|.||, | Tk+1 +;5k
® Fix &1 and zp4 1, take a dual ascent step on 3:

Br+1 = Br + pr (Tpg1 — 241) -
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Example Il: Robust PCA

miél |\L|l, +A[|S]l;, st. L+S=Y.

® Form the augmented Lagrangian:

Lu(L, S, A) = | Ll + A[IS[l; + (A, L+ S -Y)

+§||L+S—Y||§.

=] & = E DA
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L R e e MR () |
Example Il: Robust PCA

%%HMh+Mwm,sm L+S=Y.

® Fix Sk and Ag, find Lgyq via

Ly, = argn%n L,(L, Sk, Ar)

1 2
= argn}:in{HLH*JrgHL+Sk—Y+—Ak }
M F

= prox, -, (Y = Sk —n A)-
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L R e e MR () |
Example Il: Robust PCA

%%Hﬂh+Mwm,sL L+S=Y.

® Fix Liy1 and Ay, find Sj41 via

Siy1 = arg msin L,(Lyy1, S, Ay)

12
= argmin{)\HSHl—i-EHLk+1+S—Y—i——Ak }
s 2 W r

= PIOXy, 1|, (Y —Lp1 — ,u_lAk) .

Qing Qu Scalable Convex Optimization Methods May 24, 2022 69 /77



Example Il: Robust PCA

® Fix Sk and Ag, find Lgyq via
Ly, = Prox,,—1., (Y -8k — M_lAk) .
® Fix Lyy1 and Ay, find Sj1 via
Sk11 = ProxXy,—1.|, (Y — Ly — ,u_lAk) )
® Fix Liy; and Si41, take a dual ascent step on A:

Apr1 = Ap + pg (Lgyr + Sk = Y).
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Alternating Direction Methods of Multipliers (ADMM)

Example Il: Robust PCA

: Problem: ming, g £,(L,S,A), given Y, A, 1 > 0.
 Input: Ly, Sy, Ag € R™*™,
: for (k=0,1,2,...,K —1) do
Ly PTOX), 1.1 [Y - S, — ,U,_lAk].
Sk+1 — ProxXy 1., [Y — Ly — ,u_lAk].
Apy1 +— Ay + N(Lk—i-l + Ski1 — Y)
end for
: Output: L, < Lg:; S, + Sk.

A
k - Residual Network Module
Linear operator

Lagrange
Multiplier ‘ Nonlinear thresholding |
Update
X
identity

F(x)
ight |
an Fx)+x @

Agert ‘J/'
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Summary for ADMM

min g(x)+ h(z), st. Ax+ Bz = y.

)

e ADMM is easy to implement and use, and scalable for large-scale
problem.

® ADMM is slow to converge to high accuracy (with O(1/k)
convergence rate).
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@ Motivating Examples for Recovery of Low-Dim Models

@ (Accelerated) Proximal Methods

O Summary & Extensions
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Summary & Extensions

Optimization Challenges for Structured Data Recovery

® Challenge of Scale: scale algorithms to when n is very large.
Second order methods == First order methods...
® Nonsmoothness: first order methods are slow for nonsmooth.

min Fl@) = f(z) + gla). .
xeR” ~—— ——
smooth convex  nonsmooth convex

that we deal with proximal gradient method:

O1/VEk) =  OQ1/k) = O0Q1/k}) = O(e)
~——— —— ~—— ~——
subgradient proximal gradient APG RSC
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Summary & Extensions

Optimization Challenges for Structured Data Recovery

® Challenge of Scale: scale algorithms to when n is very large.
Second order methods = First order methods...
® Nonsmoothness: first order methods are slow for nonsmooth.

min Fle) = f@) + g@). .
xeR” ~—— ——
smooth convex  nonsmooth convex
that we deal with proximal gradient method:
Ok =  O1/k) = O(1/k) = O(e )

~——— —— ~—— ~——
subgradient proximal gradient APG RSC

e Equality Constraints with Separable Structures: ADMM

min g(x) + h(z), st. Az + Bz = y.

x,z
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Other Ideas for Better Scalability
Typical optimization problem: ming f(x) = + > hi(z), x € R™

m

Complexity = per iteration cost x # of iterations.

® Block Coordinate Descent reduces dependency on the dimension n:
O(n) — O(n'/?).

¢ Stochastic Gradient Descent (with variance reduction) reduces
dependency on sample size m:

O(m) — O(m*/?).

e Acceleration Schemes reduce the number of iterations k:
O(e72) = O(e71/?).

Nonconvex programs are a different story... (later, Lecture 3).
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Summary & Extensions

Algorithmic Unrolling Beyond LISTA
1: Problem: min, 5|y — Az|3 + A||z||1, given y € R™, A € R™*™.
2: Input: ¢y € R™ and L > \ax(A*A).
3 for (k=0,1,2,...,K — 1) do
4w < T — %A*(Amk —y).
5 Tyl < SOft)\/L('wk).
6: end for
7: Output: x, « xi.

The unrolled iterations resemble Doep

Neural
Network

a deep neural network! Module

RelLu :
0

We can optimize the optimization path of ISTA using supervised learning”:

1 1 1
wy, < T — EA*(A:I;;~C —y) = (I — EA*A) Ty + ZA*Ay

—_—— —_——
learnable parameter S learnable parameter b

7Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun;-ICML 2010.
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Summary

Next lecture: Learning Low-dimensional Models via
Nonconvex Optimization.

Thank You! Questions?
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