ICASSP 2022 Short Course One on Low-Dimensional Models for High-Dimensional Data

Lecture 2: Scalable Convex Optimization Methods for Low-Dimensional Structures

Sam Buchanan, Yi Ma, Qing Qu John Wright, Yuqian Zhang, Zhihui Zhu

May 24, 2022

Recap for Recovery of Low-dimensional Structures

Parallel developments for sparse vectors and low-rank matrices.

Sparse v.s. Low-rank	Sparse Vector	Low-rank Matrix
Low-dimensionality of	individual signal x	a set of signals X
Compressive sensing	$oldsymbol{y} = oldsymbol{A}oldsymbol{x}$	$oldsymbol{Y} = \mathcal{A}(oldsymbol{X})$
Low-dim measure	ℓ^0 norm $\ oldsymbol{x}\ _0$	$rank(oldsymbol{X})$
Convex surrogate	ℓ^1 norm $\ oldsymbol{x}\ _1$	nuclear norm $\ oldsymbol{X}\ _*$
Success conditions (RIP)	$\delta_{2k}(\boldsymbol{A}) \ge \sqrt{2} - 1$	$\delta_{4r}(\boldsymbol{A}) \ge \sqrt{2} - 1$
Random measurements	$m = O\bigl(k\log(n/k)\bigr)$	m = O(nr)
Stable/Inexact recovery	$oldsymbol{y} = oldsymbol{A}oldsymbol{x} + oldsymbol{z}$	$oldsymbol{Y} = \mathcal{A}(oldsymbol{X}) + oldsymbol{Z}$
Phase transition at	Stat. dim. of descent cone: $m^* = \delta(D)$	

< A > <

→

1 Motivating Examples for Recovery of Low-Dim Models

- **2** (Accelerated) Proximal Methods
- 3 Alternating Direction Methods of Multipliers (ADMM)
- **4** Summary & Extensions

< f³ ► <

Sparse Recovery

Recovering a sparse signal x_o from:

$$m{y} = m{A} \quad m{x}_o, \ (1)$$

where $A \in \mathbb{R}^{m \times n}$ is a linear map.

∃ →

Sparse Recovery

• Basis pursuit (BP):

$$\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_{1}, \quad \text{s.t.} \quad \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}.$$

イロト イボト イヨト イヨト

æ

Sparse Recovery

• Basis pursuit (BP):

$$\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_{1}, \quad \text{s.t.} \quad \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}.$$

• Basis pursuit denoising (BPDN):

$$\min_{\boldsymbol{x}} \ \|\boldsymbol{x}\|_1, \quad \text{s.t.} \quad \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_2 \le \delta,$$

which is equivalent to the lasso problem with properly chosen λ :

$$\min_{\boldsymbol{x}} \ \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_2^2 + \lambda \|\boldsymbol{x}\|_1$$

Recommendation Ratings:

Items Observed (Incomplete) Ratings \boldsymbol{Y}

We observe:

$$\boldsymbol{Y}_{\text{Observed ratings}} = \mathcal{P}_{\Omega} \begin{bmatrix} \boldsymbol{X} \\ \text{Complete ratings} \end{bmatrix}$$

where $\Omega \doteq \{(i, j) \mid \text{user } i \text{ has rated product } j\}.$

Recommendation Ratings:

Items Observed (Incomplete) Ratings \boldsymbol{Y}

Recommendation Ratings:

Observed (Incomplete) Ratings \boldsymbol{Y}

Recovering a low-rank matrix X_o :

$$oldsymbol{y} = \mathcal{A} \begin{bmatrix} oldsymbol{X}_o \\ \mathsf{unknown} \end{bmatrix},$$

where, $\mathcal{A}: \mathbb{R}^{n_1 \times n_2} \to \mathbb{R}^m$ is a linear map.

(2)

• Nuclear norm minimization:

$$\min_{\boldsymbol{X}} \ \left\| \boldsymbol{X} \right\|_{*}, \hspace{1em} ext{s.t.} \hspace{1em} \boldsymbol{y} \ = \ \mathcal{A} \left[\boldsymbol{X}
ight].$$

Nuclear norm minimization: •

$$\min_{\boldsymbol{X}} \ \left\| \boldsymbol{X} \right\|_{*}, \hspace{1em} ext{s.t.} \hspace{1em} \boldsymbol{y} \ = \ \mathcal{A} \left[\boldsymbol{X}
ight].$$

Nuclear norm minimization under noise: •

$$\min_{\boldsymbol{X}} \ \left\|\boldsymbol{X}\right\|_{*}, \quad \text{s.t.} \quad \left\|\boldsymbol{y} - \mathcal{A}\left[\boldsymbol{X}\right]\right\|_{F} \ \leq \ \delta.$$

A ► <

→ ∃ →

• Nuclear norm minimization:

$$\min_{\boldsymbol{X}} \ \left\| \boldsymbol{X} \right\|_{*}, \hspace{1em} ext{s.t.} \hspace{1em} \boldsymbol{y} \ = \ \mathcal{A} \left[\boldsymbol{X}
ight].$$

• Nuclear norm minimization under noise:

$$\min_{\boldsymbol{X}} \ \left\| \boldsymbol{X} \right\|_{*}, \quad \text{s.t.} \quad \left\| \boldsymbol{y} - \mathcal{A} \left[\boldsymbol{X} \right] \right\|_{F} \le \delta.$$

Similarly, the problem is equivalent to

$$\min_{\boldsymbol{X}} \frac{1}{2} \|\boldsymbol{y} - \mathcal{A}[\boldsymbol{X}]\|_{F}^{2} + \lambda \|\boldsymbol{X}\|_{*},$$

for properly chosen $\lambda > 0$.

Low-rank & Sparse Decomposition

Robustly recover a low-rank matrix L_o from:

$$Y = L_o + S_o, \qquad (3)$$
observation unknown low-rank unknown sparse

where $L_o \in \mathbb{R}^{n_1 \times n_2}$ is low-rank, and $S_o \in \mathbb{R}^{n_1 \times n_2}$ is sparse.

Low-rank & Sparse Decomposition

• Principal component pursuit (PCP):

$$\min_{\boldsymbol{L},\boldsymbol{S}} \ \left\|\boldsymbol{L}\right\|_* + \lambda \left\|\boldsymbol{S}\right\|_1, \quad \text{s.t.} \quad \boldsymbol{Y} \ = \ \boldsymbol{L} + \boldsymbol{S}.$$

Low-rank & Sparse Decomposition

• Principal component pursuit (PCP):

$$\min_{\boldsymbol{L},\boldsymbol{S}} \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{S}\|_1, \quad \text{s.t.} \quad \boldsymbol{Y} = \boldsymbol{L} + \boldsymbol{S}.$$

• Stable principal component pursuit (Stable PCP):

$$\min_{\boldsymbol{L},\boldsymbol{S}} \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{S}\|_1 + \frac{\mu}{2} \|\boldsymbol{Y} - \boldsymbol{L} - \boldsymbol{S}\|_F^2$$

Convex Nonsmooth Problems

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$

smooth nonsmooth

• Basis pursuit denoising:

$$f(\boldsymbol{x}) = rac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_2^2, \quad g(\boldsymbol{x}) = \lambda \| \boldsymbol{x} \|_1.$$

• Stable low-rank matrix recovery:

$$f(\boldsymbol{X}) = \frac{1}{2} \|\boldsymbol{y} - \mathcal{A}[\boldsymbol{X}]\|_{F}^{2}, \quad g(\boldsymbol{X}) = \lambda \|\boldsymbol{X}\|_{*}.$$

• Stable PCP:

$$f(\boldsymbol{L},\boldsymbol{S}) = \frac{\mu}{2} \|\boldsymbol{Y} - \boldsymbol{L} - \boldsymbol{S}\|_{F}^{2}, \quad g(\boldsymbol{L},\boldsymbol{S}) = \|\boldsymbol{L}\|_{*} + \lambda \|\boldsymbol{S}\|_{1}.$$

Optimization Challenges for Structured Data Recovery

• Challenge of Scale: scale algorithms to when n is very large.

Second order methods \implies First order methods... (5)

• Nonsmoothness: first order methods are slow for nonsmooth.

$$\mathcal{O}(1/\sqrt{k}) \implies \mathcal{O}(1/k) \implies \mathcal{O}(1/k^2) \implies \mathcal{O}(e^{-\alpha k})$$
 (6)

- Equality Constraints: augmented Lagrange multiplier (ALM).
- **Separable Structures**: alternating direction of multipliers method (ADMM).

< 回 > < 三 > < 三 > -

Gradient Descent for Smooth Functions, [Cauchy, 1847] For minimizing a smooth convex function (App. B):

$$\min f(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathcal{C} \text{ (a convex set)},$$
 (7)

conduct local gradient descent search (App. D):

$$\boldsymbol{x}_{k+1} = \mathcal{P}_{\mathcal{C}}\left(\boldsymbol{x}_{k} - \tau_{k} \nabla f(\boldsymbol{x}_{k})\right),$$
 (8)

where a rule of thumb: $\tau_k \approx 1/L$, where L the Lipschitz constant.

- figure courtesy of Prof. Carlos Fernandez of NYU.

< □ > < 同 > < 回 > < 回 > < 回 >

13 / 77

(Projected) Subgradient Methods

• The loss function $F(\cdot)$ is nonsmooth: **cannot** apply gradient descent, as $\nabla F(x_0)$ might not exist.

(Projected) Subgradient Methods

- The loss function $F(\cdot)$ is nonsmooth: cannot apply gradient descent, as $\nabla F(x_0)$ might not exist.
- Similar to GD, a natural choice is the "subgradient-based method":

$$\boldsymbol{x}_{k+1} = \mathcal{P}_{\mathcal{C}} \left(\boldsymbol{x}_k - \tau_k \cdot \boldsymbol{g}_k \right),$$

14 / 77

• # • • = • • = •

(Projected) Subgradient Methods

- The loss function F(·) is nonsmooth: cannot apply gradient descent, as ∇F(x₀) might not exist.
- Similar to GD, a natural choice is the "subgradient-based method":

$$\boldsymbol{x}_{k+1} = \mathcal{P}_{\mathcal{C}} \left(\boldsymbol{x}_k - \tau_k \cdot \boldsymbol{g}_k \right),$$

• Here, $g_k \in \partial F(x)$ is any subgradient of $F(\cdot)$ at x_k ; $\mathcal{P}_{\mathcal{C}}(\cdot)$ is the projection onto the set \mathcal{C} . Subgradient & Subdifferential

differentiable

nondifferentiable

Definition (Subgradient)

Let $F: \mathbb{R}^n \mapsto \mathbb{R}$ be *convex*. A subgradient of F at x_0 is any g satisfying

$$F(\boldsymbol{x}) \geq F(\boldsymbol{x}_0) + \langle \boldsymbol{g}, \boldsymbol{x} - \boldsymbol{x}_0 \rangle, \quad \forall \ \boldsymbol{x} \in \mathbb{R}^n.$$

Subgradient & Subdifferential

differentiable

nondifferentiable

Definition (Subdifferential)

Subdifferential is the set of *all* subgradients of $F(\cdot)$ at \boldsymbol{x}_0 :

$$\partial F(\boldsymbol{x}_0) := \{ \boldsymbol{g} \mid F(\boldsymbol{x}) \geq F(\boldsymbol{x}_0) + \langle \boldsymbol{g}, \boldsymbol{x} - \boldsymbol{x}_0 \rangle, \ \forall \boldsymbol{x} \in \mathbb{R}^n \}.$$

Examples of Subgradient

• Absolute value function F(x) = |x|:

$$\partial F(x) = \begin{cases} \{1\} & x > 0, \\ [-1,1] & x = 0, \\ \{-1\} & x < 0. \end{cases}$$

→ ∃ →

< 47 ▶

Examples of Subgradient

• Absolute value function F(x) = |x|:

$$\partial F(x) = \begin{cases} \{1\} & x > 0, \\ [-1,1] & x = 0, \\ \{-1\} & x < 0. \end{cases}$$

•
$$\ell_1$$
-norm $F(\boldsymbol{x}) = \|\boldsymbol{x}\|_1 = \sum_{i=1}^n |x_i|$:
 $\partial F(\boldsymbol{x}) = \partial F(x_1) \times \cdots \times \partial F(x_n), \quad \boldsymbol{x} \in \mathbb{R}^n.$

17 / 77

Slow Convergence of the Subgradient Method

Suppose $\mathcal{C} = \mathbb{R}^n$, and the subgradient method

$$\boldsymbol{x}_{k+1} \;=\; \boldsymbol{x}_k \;-\; au_k \cdot \boldsymbol{g}_k,$$

with τ_k being the stepsize and $g_k \in \partial F(x_k)$ is a subgradient of F at x_k .

Slow Convergence of the Subgradient Method

Suppose $\mathcal{C} = \mathbb{R}^n$, and the subgradient method

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \boldsymbol{\tau}_k \cdot \boldsymbol{g}_k,$$

with τ_k being the stepsize and $g_k \in \partial F(x_k)$ is a subgradient of F at x_k .

Theorem $(\mathcal{O}(1/\sqrt{k}) \text{ convergence of subgradient methods})$

Suppose $F : \mathbb{R}^n \mapsto \mathbb{R}$ is *L*-Lipschitz, and the optimal function value is F_{\star} . Choose the stepsize satisfying $\tau_k = \frac{F_k - F_{\star}}{\|g_k\|_2^2}$, then we have the convergence rate

$$F_{best,k} - F_{\star} \leq \frac{RL}{\sqrt{k}},$$

where $F_{best,k} = \min_{1 \le i \le k} F(\boldsymbol{x}_i)$ and $R \ge \|\boldsymbol{x}_0 - \boldsymbol{x}_\star\|_2$.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Comparison of Convergence¹

https://github.com/RoyiAvital/Projects/tree/master/Optimization/LsL1SolversAnalysis> < > >

Scalable Convex Optimization Methods

Comparison of Convergence²

• For recovery of low-dimensional models, **generic solvers are slow** (e.g., subgradient method).

20 / 77

² https://github.com/RoyiAvital/Projects/tree/master/Optimization/LsL1SolversAnalysis + + 🛓 + 📑 🔗

1 Motivating Examples for Recovery of Low-Dim Models

2 (Accelerated) Proximal Methods

3 Alternating Direction Methods of Multipliers (ADMM)

4 Summary & Extensions

< (17) × <

Composite Nonsmooth Problems

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$
smooth nonsmooth

• The function $f(\cdot):\mathbb{R}^n\mapsto\mathbb{R}$ is convex, continuously differentiable, and L-smooth with

$$\left\|
abla f(oldsymbol{x}) -
abla f(oldsymbol{x}')
ight\|_2 \le L \left\| oldsymbol{x} - oldsymbol{x}'
ight\|_2, \quad orall oldsymbol{x}, \ oldsymbol{x}' \in \mathbb{R}^n.$$

• $g(\cdot): \mathbb{R}^n \mapsto \mathbb{R}$ is convex but possibly *nonsmooth*.

Composite Nonsmooth Problems

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$

smooth nonsmooth

• Basis pursuit denoising:

$$f(\boldsymbol{x}) = rac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_2^2, \quad g(\boldsymbol{x}) = \lambda \| \boldsymbol{x} \|_1.$$

• Stable low-rank matrix recovery:

$$f(\mathbf{X}) = \frac{1}{2} \| \mathbf{y} - \mathcal{A}[\mathbf{X}] \|_F^2, \quad g(\mathbf{X}) = \lambda \| \mathbf{X} \|_*.$$

• Stable PCP:

$$f(\boldsymbol{L},\boldsymbol{S}) = \frac{\mu}{2} \|\boldsymbol{Y} - \boldsymbol{L} - \boldsymbol{S}\|_{F}^{2}, \quad g(\boldsymbol{L},\boldsymbol{S}) = \|\boldsymbol{L}\|_{*} + \lambda \|\boldsymbol{S}\|_{1}.$$

< ∃⇒

Gradient Descent, [Cauchy, 1847]

For minimizing a smooth convex function (App. B):

 $\min f(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathsf{C} \text{ (a convex set)},$

conduct local gradient descent search (App. D):

 $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \gamma_k \nabla f(\boldsymbol{x}_k),$

where a rule of thumb: $\gamma \approx 1/L$, where L the Lipschitz constant (why?).

- figure courtesy of Prof. Carlos Fernandez of NYU.

イロト 不得下 イヨト イヨト 二日

24 / 77

Gradient Descent

For $f(\boldsymbol{x})$ has *L*-Lipschitz continuous gradients if

$$\|\nabla f(\boldsymbol{x}') - \nabla f(\boldsymbol{x})\|_2 \le L \|\boldsymbol{x}' - \boldsymbol{x}\|_2, \quad \forall \boldsymbol{x}', \boldsymbol{x} \in \mathbb{R}^n.$$
(9)

イロト イボト イヨト イヨト

æ

Gradient Descent

For $f(\boldsymbol{x})$ has *L*-Lipschitz continuous gradients if

$$\|\nabla f(\boldsymbol{x}') - \nabla f(\boldsymbol{x})\|_2 \le L \|\boldsymbol{x}' - \boldsymbol{x}\|_2, \quad \forall \boldsymbol{x}', \boldsymbol{x} \in \mathbb{R}^n.$$
(9)

This gives a matching quadratic upper bound:

Gradient Descent

For $f(\boldsymbol{x})$ has *L*-Lipschitz continuous gradients if

$$\|\nabla f(\boldsymbol{x}') - \nabla f(\boldsymbol{x})\|_2 \le L \|\boldsymbol{x}' - \boldsymbol{x}\|_2, \quad \forall \boldsymbol{x}', \boldsymbol{x} \in \mathbb{R}^n.$$
(9)

This gives a matching quadratic upper bound:

$$\begin{aligned} f(\boldsymbol{x}') &\leq \hat{f}(\boldsymbol{x}', \boldsymbol{x}) \\ &\doteq f(\boldsymbol{x}) + \left\langle \nabla f(\boldsymbol{x}), \boldsymbol{x}' - \boldsymbol{x} \right\rangle + \frac{L}{2} \left\| \boldsymbol{x}' - \boldsymbol{x} \right\|_2^2 \\ &= \frac{L}{2} \left\| \boldsymbol{x}' - (\boldsymbol{x} - \tau \nabla f(\boldsymbol{x})) \right\|_2^2 + h(\boldsymbol{x}). \end{aligned}$$

Take a step to the minimizer of this bound:

$$oldsymbol{x}_{k+1} = rg\min_{oldsymbol{x}'} \hat{f}(oldsymbol{x}',oldsymbol{x}_k) \; = \; oldsymbol{x}_k - rac{1}{L}
abla f(oldsymbol{x}_k).$$

Fact: this gives a convergence rate of O(1/k).

May 24, 2022

• • = • • = •
Proximal Gradient Descent

The same (local) strategy for a convex function with a nonsmooth term:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$

smooth nonsmooth

Upper bound:

$$\hat{F}(\boldsymbol{x}, \boldsymbol{x}_k) = f(\boldsymbol{x}_k) + \langle \nabla f(\boldsymbol{x}_k), \boldsymbol{x} - \boldsymbol{x}_k \rangle + \frac{L}{2} \|\boldsymbol{x} - \boldsymbol{x}_k\|_2^2 + g(\boldsymbol{x})$$

$$= \frac{L}{2} \|\boldsymbol{x} - (\boldsymbol{x}_k - \tau \nabla f(\boldsymbol{x}_k))\|_2^2 + g(\boldsymbol{x}) + h(\boldsymbol{x}_k).$$

A ► <

ヨト イヨト

Proximal Gradient Descent

The same (local) strategy for a convex function with a nonsmooth term:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$$

smooth nonsmooth

Upper bound:

$$\hat{F}(\boldsymbol{x}, \boldsymbol{x}_k) = f(\boldsymbol{x}_k) + \langle \nabla f(\boldsymbol{x}_k), \boldsymbol{x} - \boldsymbol{x}_k \rangle + \frac{L}{2} \|\boldsymbol{x} - \boldsymbol{x}_k\|_2^2 + g(\boldsymbol{x})$$

$$= \frac{L}{2} \|\boldsymbol{x} - (\boldsymbol{x}_k - \tau \nabla f(\boldsymbol{x}_k))\|_2^2 + g(\boldsymbol{x}) + h(\boldsymbol{x}_k).$$

A step to the minimizer of the bound $\hat{F}(\boldsymbol{x}, \boldsymbol{x}_k)$:

$$\boldsymbol{x}_{k+1} = \arg\min_{\boldsymbol{x}} \frac{L}{2} \| \boldsymbol{x} - \underbrace{(\boldsymbol{x}_k - \frac{1}{L} \nabla f(\boldsymbol{x}_k))}_{\boldsymbol{w}_k} \|_2^2 + g(\boldsymbol{x})$$
$$= \arg\min_{\boldsymbol{x}} \frac{L}{2} \| \boldsymbol{x} - \boldsymbol{w}_k \|_2^2 + g(\boldsymbol{x}).$$

May 24, 2022

Definition (Proximal Operator)

The proximal operator of a convex function $g(\cdot): \mathbb{R}^n \mapsto \mathbb{R}$ is

$$\operatorname{prox}_{g}(\boldsymbol{w}) := \min_{\boldsymbol{x}} \left\{ \frac{1}{2} \|\boldsymbol{x} - \boldsymbol{w}\|_{2}^{2} + g(\boldsymbol{x}) \right\}$$

э

(日)

Definition (Proximal Operator)

The proximal operator of a convex function $g(\cdot):\mathbb{R}^n\mapsto\mathbb{R}$ is

$$\operatorname{prox}_{g}(\boldsymbol{w}) := \min_{\boldsymbol{x}} \left\{ \frac{1}{2} \| \boldsymbol{x} - \boldsymbol{w} \|_{2}^{2} + g(\boldsymbol{x}) \right\}$$

Thus, the proximal iteration can be written as

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \arg\min_{\boldsymbol{x}} \left\{ \frac{L}{2} \| \boldsymbol{x} - \boldsymbol{w}_k \|_2^2 + g(\boldsymbol{x}) \right\} \\ &= \operatorname{prox}_{g/L}(\boldsymbol{w}_k) \end{aligned}$$

For many structured low-dim problems, the proximal mapping has closed-form and can be computed efficiently!

27 / 77

Definition (Proximal Operator)

The proximal operator of a convex function $g(\cdot):\mathbb{R}^n\mapsto\mathbb{R}$ is

$$\operatorname{prox}_{g}(\boldsymbol{w}) := \min_{\boldsymbol{x}} \left\{ \frac{1}{2} \| \boldsymbol{x} - \boldsymbol{w} \|_{2}^{2} + g(\boldsymbol{x}) \right\}$$

Example: ℓ_1 -norm

• $g(\mathbf{x}) = t \|\mathbf{x}\|_1$, $\operatorname{prox}_g(\cdot)$ is the soft-thresholding operator $\operatorname{soft}_t(\cdot)$:

$$\left[\operatorname{prox}_{g}(\boldsymbol{w})\right]_{i} = \left[\operatorname{soft}_{t}(\boldsymbol{w})\right]_{i} = \begin{cases} w_{i} - t & w_{i} \ge t \\ 0 & |w_{i}| \le t \\ w_{i} + t & w_{i} \le -t \end{cases}$$

How to prove it?

• Subgradient characterization: for any convex function $F : \mathbb{R}^n \mapsto \mathbb{R}$,

$$F(\boldsymbol{x}_{\star}) = \min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) \iff \mathbf{0} \in \partial F(\boldsymbol{x}_{\star})$$

How to prove it?

• Subgradient characterization: for any convex function $F : \mathbb{R}^n \mapsto \mathbb{R}$,

$$F(\boldsymbol{x}_{\star}) = \min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) \iff \mathbf{0} \in \partial F(\boldsymbol{x}_{\star})$$

• Proof ideas of the proximal operator for $g(x) = t ||x||_1$: The objective function reaches minimum when the subdifferential of

$$F(x) = \frac{1}{2} \|x - w\|_2^2 + t \|x\|_1$$

contains zero, that is

$$\mathbf{0} \in (\mathbf{x} - \mathbf{w}) + t\partial \|\mathbf{x}\|_1 = \begin{cases} x_i - w_i + t, & x_i > 0\\ -w_i + t[-1, 1], & x_i = 0, \\ x_i - w_i - t, & x_i < 0 \end{cases}$$

< 回 > < 三 > < 三 > >

Thresholding:

Example: ℓ_1 -norm

• $g(\boldsymbol{x}) = t \|\boldsymbol{x}\|_1$, $\operatorname{prox}_g(\cdot)$ is the soft-thresholding operator:

$$\left[\operatorname{prox}_{g}(\boldsymbol{w})\right]_{i} = \left[\operatorname{soft}_{t}(\boldsymbol{w})\right]_{i} = \begin{cases} w_{i} - t & w_{i} \ge t \\ 0 & |w_{i}| \le t \\ w_{i} + t & w_{i} \le -t \end{cases}$$

э

Definition (Proximal Operator)

The proximal operator of a convex function $g(\cdot): \mathbb{R}^{n \times m} \mapsto \mathbb{R}$ is

$$\operatorname{prox}_{g}(\boldsymbol{W}) := \min_{\boldsymbol{X} \in \mathbb{R}^{m \times n}} \left\{ \frac{1}{2} \| \boldsymbol{X} - \boldsymbol{W} \|_{F}^{2} + g(\boldsymbol{X}) \right\}$$

Example: nuclear norm

• $g(W) = t ||W||_*$ with $W = U\Sigma V^{\top}$, then $prox_g(\cdot)$ is the singular value thresholding operator:

$$\operatorname{prox}_{g}(\boldsymbol{W}) = \boldsymbol{U}\operatorname{soft}_{t}(\boldsymbol{\Sigma})\boldsymbol{V}^{\top}.$$

イロト 不得 トイヨト イヨト

Proximal Gradient Algorithm

Proximal Gradient (PG)

Problem Class: $\min_{\boldsymbol{x}} F(\boldsymbol{x}) = f(\boldsymbol{x}) + g(\boldsymbol{x})$

 $f,g:\mathbb{R}^n\to\mathbb{R}$ convex, ∇f L-Lipschitz and g nonsmooth.

Basic Iteration: set $\boldsymbol{x}_0 \in \mathbb{R}^n$. Repeat:

$$oldsymbol{w}_k \leftarrow oldsymbol{x}_k - rac{1}{L}
abla f(oldsymbol{x}_k), \ oldsymbol{x}_{k+1} \leftarrow \operatorname{prox}_{g/L}[oldsymbol{w}_k].$$

Convergence Guarantee:

$$F(oldsymbol{x}_k) - F(oldsymbol{x}_{\star})$$
 converges at a rate of $O(1/k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Example: Proximal Gradient for Basis Pursuit Denoising

Iterative soft-thresholding algorithm (ISTA):

1: **Problem:** $\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1}$, given $\boldsymbol{y} \in \mathbb{R}^{m}$, $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. 2: **Input:** $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ and $L \ge \lambda_{\max}(\boldsymbol{A}^{*}\boldsymbol{A})$. 3: for $(k = 0, 1, 2, \dots, K - 1)$ do 4: $\boldsymbol{w}_{k} \leftarrow \boldsymbol{x}_{k} - \frac{1}{L}\boldsymbol{A}^{*}(\boldsymbol{A}\boldsymbol{x}_{k} - \boldsymbol{y})$. 5: $\boldsymbol{x}_{k+1} \leftarrow \operatorname{soft}_{\lambda/L}(\boldsymbol{w}_{k})$. 6: end for 7: **Output:** $\boldsymbol{x}_{\star} \leftarrow \boldsymbol{x}_{K}$.

³Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun, ICML 2010. Also known as the Learned ISTA (LISTA). (\square)

Example: Proximal Gradient for Basis Pursuit Denoising

Iterative soft-thresholding algorithm (ISTA):

- 1: **Problem:** $\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1}$, given $\boldsymbol{y} \in \mathbb{R}^{m}$, $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. 2: **Input:** $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ and $L \ge \lambda_{\max}(\boldsymbol{A}^{*}\boldsymbol{A})$. 3: for $(k = 0, 1, 2, \dots, K - 1)$ do 4: $\boldsymbol{w}_{k} \leftarrow \boldsymbol{x}_{k} - \frac{1}{L}\boldsymbol{A}^{*}(\boldsymbol{A}\boldsymbol{x}_{k} - \boldsymbol{y})$. 5: $\boldsymbol{x}_{k+1} \leftarrow \operatorname{soft}_{\lambda/L}(\boldsymbol{w}_{k})$. 6: end for
- 7: Output: $x_{\star} \leftarrow x_K$.

The unrolled iterations resemble a deep neural network!³

³Learning Fast Approximations of Sparse Coding, Karol Gregor and Yann LeCun, ICML 2010. Also known as the Learned ISTA (LISTA).

Scalable Convex Optimization Methods

33 / 77

From ISTA to Learned ISTA (LISTA)

- 1: Problem: $\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1}$, given $\boldsymbol{y} \in \mathbb{R}^{m}$, $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. 2: Input: $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ and $L \geq \lambda_{\max}(\boldsymbol{A}^{*}\boldsymbol{A})$.
- 3: for $(k = 0, 1, 2, \dots, K 1)$ do

4:
$$oldsymbol{w}_k \leftarrow oldsymbol{x}_k - rac{1}{L}oldsymbol{A}^*(oldsymbol{A}oldsymbol{x}_k - oldsymbol{y}).$$

- 5: $\boldsymbol{x}_{k+1} \leftarrow \mathsf{soft}_{\lambda/L}(\boldsymbol{w}_k).$
- 6: end for
- 7: Output: $x_{\star} \leftarrow x_K$.

The unrolled iterations resemble a deep neural network!

We can optimize the optimization path of ISTA using supervised learning⁴:

$$oldsymbol{w}_k \leftarrow oldsymbol{x}_k - rac{1}{L}oldsymbol{A}^*(oldsymbol{A}oldsymbol{x}_k - oldsymbol{y}) = \underbrace{ig(I - rac{1}{L}oldsymbol{A}^*oldsymbol{A} ig)}_{ ext{learnable parameter }oldsymbol{A}} oldsymbol{x}_k + \underbrace{rac{1}{L}oldsymbol{A}^*oldsymbol{A}oldsymbol{y}}_{ ext{learnable parameter }oldsymbol{A}}$$

4Learning Fast Approximations of Sparse Coding, Karol Gregor and ¥ann LeCun، ICM 2010، الع

Example: Proximal Gradient for Basis Pursuit Denoising

Iterative soft-thresholding algorithm (ISTA):

1: Problem: $\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_2^2 + \lambda \|\boldsymbol{x}\|_1$, given $\boldsymbol{y} \in \mathbb{R}^m$, $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. 2: Input: $x_0 \in \mathbb{R}^n$ and $L > \lambda_{\max}(A^*A)$. 3: for $(k = 0, 1, 2, \dots, K - 1)$ do $\boldsymbol{w}_k \leftarrow \boldsymbol{x}_k - \frac{1}{L} \boldsymbol{A}^* (\boldsymbol{A} \boldsymbol{x}_k - \boldsymbol{y}).$ 4: 0.50 $\boldsymbol{x}_{k+1} \leftarrow \operatorname{soft}_{\lambda/L}(\boldsymbol{w}_k).$ 5: 6: end for 0.20 7: Output: $x_{\star} \leftarrow x_{K}$. 0.10 -fstai Proximal Gradient vs. Subgradient Method. 0.05

600

800

Subgradient method

400

Proximal gradient 200

0.02

1000

Can We Further Accelerate Convergence?

Recall gradient descent for smooth $\min_{\boldsymbol{x}} f(\boldsymbol{x})$:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha \nabla f(\boldsymbol{x}_k).$$

< □ > < □ > < □ > < □ > < □ > < □ >

Can We Further Accelerate Convergence?

Recall gradient descent for smooth $\min_{\boldsymbol{x}} f(\boldsymbol{x})$:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha \nabla f(\boldsymbol{x}_k).$$

The heavy ball method [Polyak, 1964]

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha \nabla f(\boldsymbol{x}_k) + \underbrace{\beta \left(\boldsymbol{x}_k - \boldsymbol{x}_{k-1} \right)}_{\text{momentum}}.$$

36 / 77

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Can We Further Accelerate Convergence?

Recall gradient descent for smooth $\min_{\boldsymbol{x}} f(\boldsymbol{x})$:

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha \nabla f(\boldsymbol{x}_k).$$

The heavy ball method [Polyak, 1964]

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha \nabla f(\boldsymbol{x}_k) + \underbrace{\beta \left(\boldsymbol{x}_k - \boldsymbol{x}_{k-1} \right)}_{\text{momentum}}.$$

It is also called the momentum method:

- Basis for popular ADAM for train deep neural networks.
- Worst convergence rate is still O(1/k), yet best possible is $O(1/k^2)$.

Accelerated Gradient Descent [Nesterov, 1983]

Generate an auxiliary point p_{k+1} of the form:

$$\boldsymbol{p}_{k+1} \doteq \boldsymbol{x}_k + \beta_{k+1} (\boldsymbol{x}_k - \boldsymbol{x}_{k-1}).$$

Move from \boldsymbol{x}_k to \boldsymbol{p}_{k+1} , and gradient descend from it:

$$\boldsymbol{x}_{k+1} = \boldsymbol{p}_{k+1} - \alpha \quad \underbrace{\nabla f(\boldsymbol{p}_{k+1})}_{\text{a stroke of genius}}$$
 .

Accelerated Gradient Descent [Nesterov, 1983]

Generate an auxiliary point p_{k+1} of the form:

$$\boldsymbol{p}_{k+1} \doteq \boldsymbol{x}_k + \beta_{k+1} (\boldsymbol{x}_k - \boldsymbol{x}_{k-1}).$$

Move from \boldsymbol{x}_k to \boldsymbol{p}_{k+1} , and gradient descend from it:

$$m{x}_{k+1} = m{p}_{k+1} - lpha \underbrace{
and f(m{p}_{k+1})}_{\mathsf{a stroke of genius}}$$

The weights α and $\{\beta_{k+1}\}$ are carefully chosen:

$$t_1 = 1, \quad t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}, \quad \beta_{k+1} = \frac{t_k - 1}{t_{k+1}}, \quad \alpha = 1/L.$$

Accelerated Gradient Descent [Nesterov, 1983]

Generate an auxiliary point p_{k+1} of the form:

$$\boldsymbol{p}_{k+1} \doteq \boldsymbol{x}_k + \beta_{k+1} (\boldsymbol{x}_k - \boldsymbol{x}_{k-1}).$$

Move from \boldsymbol{x}_k to \boldsymbol{p}_{k+1} , and gradient descend from it:

$$m{x}_{k+1} = m{p}_{k+1} - lpha \quad \underbrace{
and f(m{p}_{k+1})}_{\mathsf{a stroke of genius}}$$

The weights α and $\{\beta_{k+1}\}$ are carefully chosen:

$$t_1 = 1$$
, $t_{k+1} = \frac{1 + \sqrt{1 + 4t_k^2}}{2}$, $\beta_{k+1} = \frac{t_k - 1}{t_{k+1}}$, $\alpha = 1/L$.

- We may not always have $f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{x}_k)$.
- Achieve optimal convergence rate ${\cal O}(1/k^2)$ among 1st order methods.

Accelerated Proximal Gradient for Nonsmooth Problems

Accelerated Proximal Gradient (APG)

Problem Class: $\min_{x} F(x) = f(x) + g(x)$, f, g convex, with ∇f *L*-Lipschitz and *g* **nonsmooth**.

Basic Iteration: set $x_0 \in \mathbb{R}^n$, $p_1 = x_1 \leftarrow x_0$, and $t_1 \leftarrow 1$. Repeat for $k = 1, 2, \dots, K$:

$$t_{k+1} \leftarrow \frac{1 + \sqrt{1 + 4t_k^2}}{2}, \quad \beta_{k+1} \leftarrow \frac{t_k - 1}{t_{k+1}}.$$
$$p_{k+1} \leftarrow \mathbf{x}_k + \beta_{k+1} (\mathbf{x}_k - \mathbf{x}_{k-1}).$$
$$\mathbf{x}_{k+1} \leftarrow \operatorname{prox}_{g/L} \left[\underbrace{\mathbf{p}_{k+1} - \frac{1}{L} \nabla f(\mathbf{p}_{k+1})}_{\text{proximal gradient}} \right].$$

Convergence Guarantee:

 $F({m x}_k) - F({m x}_\star)$ converges at a rate of $O(1/k^2).$

Proximal Gradient versus Accelerated Proximal Gradient

May 24, 2022

∃ →

Example I: APG for Basis Pursuit Denoising

FISTA: Accelerated Proximal Gradient (APG) for LASSO

1: **Problem:** $\min_{\boldsymbol{x}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_{2}^{2} + \lambda \| \boldsymbol{x} \|_{1}$, given $\boldsymbol{y} \in \mathbb{R}^{m}$, $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. 2: **Input:** $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, $\boldsymbol{p}_{1} = \boldsymbol{x}_{1} \leftarrow \boldsymbol{x}_{0}$, and $t_{1} \leftarrow 1$, and $L \geq \lambda_{\max}(\boldsymbol{A}^{*}\boldsymbol{A})$. 3: for $(k = 1, 2, \dots, K - 1)$ do 4: $t_{k+1} \leftarrow \frac{1 + \sqrt{1 + 4t_{k}^{2}}}{2}$; $\beta_{k+1} \leftarrow \frac{t_{k} - 1}{t_{k+1}}$. 5: $\boldsymbol{p}_{k+1} \leftarrow \boldsymbol{x}_{k} + \beta_{k+1}(\boldsymbol{x}_{k} - \boldsymbol{x}_{k-1})$. 6: $\boldsymbol{w}_{k+1} \leftarrow \boldsymbol{p}_{k+1} - \frac{1}{L}\boldsymbol{A}^{*}(\boldsymbol{A}\boldsymbol{p}_{k+1} - \boldsymbol{y})$. 7: $\boldsymbol{x}_{k+1} \leftarrow \operatorname{soft}[\boldsymbol{w}_{k+1}, \lambda/L]$. 8: end for 9: **Output:** $\boldsymbol{x}_{\star} \leftarrow \boldsymbol{x}_{K}$.

ISTA vs. FISTA

Example II: APG for Stable PCP

Accelerated Proximal Gradient (APG) for Stable PCP

1: **Problem:** $\min_{L,S} \|L\|_* + \lambda \|S\|_1 + \frac{\mu}{2} \|Y - L - S\|_F^2$, given Y. 2: **Input:** $L_0, S_0 \in \mathbb{R}^{m \times n}, P_1^S = S_1 \leftarrow S_0, P_1^L = L_1 \leftarrow L_0, t_1 \leftarrow 1$. 3: for (k = 1, 2, ..., K - 1) do 4: $t_{k+1} \leftarrow \frac{1 + \sqrt{1 + 4t_k^2}}{2}, \beta_{k+1} \leftarrow \frac{t_k - 1}{t_{k+1}}$. 5: $P_{k+1}^L \leftarrow L_k + \beta_{k+1} (L_k - L_{k-1}); P_{k+1}^S \leftarrow S_k + \beta_{k+1} (S_k - S_{k-1})$. 6: $W_{k+1} \leftarrow Y - P_{k+1}^S$ and compute SVD: $W_{k+1} = U_{k+1} \Sigma_{k+1} V_{k+1}^*$. 7: $L_{k+1} \leftarrow U_{k+1} \text{soft} [\Sigma_{k+1}, 1/\mu] V_{k+1}^*; S_{k+1} \leftarrow \text{soft} [(Y - P_{k+1}^L), \lambda/\mu]$. 8: end for 9: Output: $L_* \leftarrow L_K; S_* \leftarrow S_K$.

GD for Strongly Convex Problems

A troubling fact though: Not supposed to be this fast!

Reason? Consider minimizing a L-Lipschitz continuous function

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^n.$$
 (10)

Assume f(x) is μ -strongly convex:

$$f((\boldsymbol{x}') \ge f(\boldsymbol{x}) + \langle \nabla f(\boldsymbol{x}), \boldsymbol{x}' - \boldsymbol{x} \rangle + \frac{\mu}{2} \| \boldsymbol{x}' - \boldsymbol{x} \|_2^2.$$
(11)

This implies (assuming f is twice differentiable):

$$\mathbf{0} \prec \mu \mathbf{I} \preceq \nabla^2 f(\mathbf{x}) \preceq L \mathbf{I}.$$

Convergence of GD for Strongly Convex Problems

Theorem (see Appendix D).

f(x): μ -strongly convex and L-Lipschitz continuous. For gradient descent with a step size $t = \frac{2}{L+\mu}$, we have:

$$\|\boldsymbol{x}_k - \boldsymbol{x}_\star\|_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^k \|\boldsymbol{x}_0 - \boldsymbol{x}_\star\|_2,$$
 (12)

where $\kappa = L/\mu$ and $\boldsymbol{x_{\star}}$ is the minimizer.

Convergence of GD for Strongly Convex Problems

Theorem (see Appendix D).

f(x): μ -strongly convex and L-Lipschitz continuous. For gradient descent with a step size $t = \frac{2}{L+\mu}$, we have:

$$\|\boldsymbol{x}_k - \boldsymbol{x}_\star\|_2 \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^k \|\boldsymbol{x}_0 - \boldsymbol{x}_\star\|_2,$$
 (12)

where $\kappa = L/\mu$ and \boldsymbol{x}_{\star} is the minimizer.

Convergence Rates for Gradient Descent:

- 1 f non-smooth: $O(1/\sqrt{k})$.
- **2** f differentiable: O(1/k).
- **3** f smooth, ∇f Lipschitz: $O(1/k^2)$.
- **4** f strongly convex: $O(e^{-\alpha k})$.

Convergence of Restricted Strong Convex Problems

Figure 1. Convergence rates of projected gradient descent in application to Lasso programs (ℓ_1 -constrained least-squares). Each panel shows the log optimization error log $||d^- \hat{\theta}||$ versus the iteration number t. Panel (a) shows three curves, corresponding to dimensions $d \in \{5000, 1000, 20000\}$, sparsity $s = \lceil \sqrt{d} \rceil$, and all with the same sample size n = 2500. All cases show geometric convergence, but the rate for larger problems becomes progressively slower. (b) For an appropriately rescaled sample size $(\alpha = \frac{1}{s \log d})$, all three convergence rates should be roughly the same, as predicted by the theory.

- Fact: Structured signal recovery problems such as LASSO and PCP satisfy restricted strong convexity.
- Hence, gradient descent enjoys globally linear convergence up to the statistical precision of the model.⁵

⁵Fast global convergence of gradient methods for high-dimensional statistical recovery, Agarwal, Negahban, Wainwright, NIPS 2010.

1 Motivating Examples for Recovery of Low-Dim Models

- 2 (Accelerated) Proximal Methods
- **3** Alternating Direction Methods of Multipliers (ADMM)

4 Summary & Extensions

< (17) × <

Optimization Challenges for Structured Data Recovery

• Challenge of Scale: scale algorithms to when n is very large.

Second order methods \implies First order methods... (14)

• Nonsmoothness: first order methods are slow for nonsmooth.

$$\mathcal{O}(1/\sqrt{k}) \implies \mathcal{O}(1/k) \implies \mathcal{O}(1/k^2) \implies \mathcal{O}(e^{-\alpha k})$$
 (15)

- Equality Constraints: augmented Lagrange multiplier (ALM).
- **Separable Structures**: alternating direction of multipliers method (ADMM).

く 目 ト く ヨ ト く ヨ ト

Equality Constrained Problems with Separable Structures

Let us consider the two-block equality constrained problem:

$$\min_{\boldsymbol{x},\boldsymbol{z}} g(\boldsymbol{x}) + h(\boldsymbol{z}), \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} = \boldsymbol{y}.$$

- $g: \mathbb{R}^n \mapsto \mathbb{R}$ and $h: \mathbb{R}^n \mapsto \mathbb{R}$ are (probably nonsmooth) convex functions.
- A and B are matrices and $y \in \operatorname{range}([A \mid B])$, so that the problem is feasible.

Constrained Nonsmooth Problem (Examples)

$$\min_{\boldsymbol{x},\boldsymbol{z}} g(\boldsymbol{x}) + h(\boldsymbol{z}), \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} = \boldsymbol{y}.$$

• Basis pursuit denoising (let z = x):

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1} \\ \Leftrightarrow \min_{\boldsymbol{x}, \boldsymbol{z}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \underbrace{\lambda \|\boldsymbol{z}\|_{1}}_{h(\boldsymbol{z})}, \quad \text{s.t.} \quad \boldsymbol{x} - \boldsymbol{z} = \boldsymbol{0}.$$

3

Constrained Nonsmooth Problem (Examples)

$$\min_{\boldsymbol{x},\boldsymbol{z}} g(\boldsymbol{x}) + h(\boldsymbol{z}), \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} = \boldsymbol{y}.$$

• Basis pursuit denoising (let z = x):

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1} \\ \Leftrightarrow \min_{\boldsymbol{x}, \boldsymbol{z}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \underbrace{\lambda \|\boldsymbol{z}\|_{1}}_{h(\boldsymbol{z})}, \quad \text{s.t.} \quad \boldsymbol{x} - \boldsymbol{z} = \boldsymbol{0}.$$

• Stable low-rank matrix recovery (let Z = X):

$$\min_{\mathbf{X}} \frac{1}{2} \|\mathcal{A}(\mathbf{X}) - \mathbf{y}\|_{2}^{2} + \lambda \|\mathbf{X}\|_{*}$$

$$\iff \min_{\mathbf{X}, \mathbf{Z}} \underbrace{\frac{1}{2} \|\mathcal{A}(\mathbf{X}) - \mathbf{y}\|_{2}^{2}}_{g(\mathbf{X})} + \underbrace{\lambda \|\mathbf{Z}\|_{*}}_{h(\mathbf{Z})}, \quad \text{s.t.} \quad \mathbf{X} - \mathbf{Z} = \mathbf{0}.$$

49 / 77

Examples: Constrained Nonsmooth Problem

$$\min_{\boldsymbol{x},\boldsymbol{z}} g(\boldsymbol{x}) + h(\boldsymbol{z}), \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} \; = \; \boldsymbol{y}.$$

Robust PCA

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶
 May 24, 2022

э

Linear Equality Constrained Optimization

Let us first consider a simpler **one-block constrained problem**:

$$\min_{\boldsymbol{x}} g(\boldsymbol{x}) \quad \text{subject to} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}, \tag{16}$$

where

- $g: \mathbb{R}^n \to \mathbb{R}$ is a (probably nonsmooth) convex function,
- $A \in \mathbb{R}^{m imes n}$ and $y \in \operatorname{range}(A)$ (so that the problem is feasible).

A (1) < A (1) < A (1) </p>
Linear Equality Constrained Optimization

Let us first consider a simpler **one-block constrained problem**:

$$\min_{\boldsymbol{x}} g(\boldsymbol{x}) \quad \text{subject to} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}, \tag{16}$$

where

- $g: \mathbb{R}^n \to \mathbb{R}$ is a (probably nonsmooth) convex function,
- $A \in \mathbb{R}^{m imes n}$ and $y \in \operatorname{range}(A)$ (so that the problem is feasible).
- A Natural Attempt: solve the unconstrained by penalizing the constraint:

$$\hat{\boldsymbol{x}}(\mu) = rg\min_{\boldsymbol{x}} g(\boldsymbol{x}) + rac{\mu}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2$$
 for a large μ . (17)

- Pros: As $\mu \to +\infty$, $\hat{m{x}}(\mu) \to m{x}_{\star}$ (the "continuation method").
- Cons: The rate of convergence depends on $L = \mu \|A\|_2^2$.

A More Principled Approach via Lagrangian

Definition (The Lagrange Duality)

The Lagrangian function of the constrained problem (16):

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) \doteq g(\boldsymbol{x}) + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} \rangle,$$

where $\lambda \in \mathbb{R}^m$ is a vector of Lagrange multipliers. This gives a dual function:

$$d(\boldsymbol{\lambda}) \doteq \inf_{\boldsymbol{x}} g(\boldsymbol{x}) + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} \rangle.$$

A More Principled Approach via Lagrangian

Definition (The Lagrange Duality)

The Lagrangian function of the constrained problem (16):

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) \doteq g(\boldsymbol{x}) + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} \rangle,$$

where $\lambda \in \mathbb{R}^m$ is a vector of Lagrange multipliers. This gives a dual function:

$$d(\boldsymbol{\lambda}) \doteq \inf_{\boldsymbol{x}} g(\boldsymbol{x}) + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} \rangle.$$

Fact (credited to Lagrange): $\exists \lambda_{\star}$ such that the optimal solution $(\boldsymbol{x}_{\star}, \boldsymbol{\lambda}_{\star})$ is a saddle point of the Lagrangian:

$$\sup_{\boldsymbol{\lambda}} \inf_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}) = \sup_{\boldsymbol{\lambda}} \inf_{\boldsymbol{x}} g(\boldsymbol{x}) + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} \rangle = \sup_{\boldsymbol{\lambda}} d(\boldsymbol{\lambda}).$$

Dual Ascent Algorithm for the Lagrangian

Fact: If

$$oldsymbol{x}'(oldsymbol{\lambda}) = rg\min_{oldsymbol{x}} g(oldsymbol{x}) + \langle oldsymbol{\lambda}, oldsymbol{A}oldsymbol{x} - oldsymbol{y}
angle,$$

then $Ax'(\lambda) - y$ is a gradient $\nabla d(\lambda)$ of the concave dual function $d(\lambda)$ at λ .

イロト イヨト イヨト ・

э

Dual Ascent Algorithm for the Lagrangian

Fact: If

$$oldsymbol{x}'(oldsymbol{\lambda}) = rg\min_{oldsymbol{x}} g(oldsymbol{x}) + \langle oldsymbol{\lambda}, oldsymbol{A}oldsymbol{x} - oldsymbol{y}
angle,$$

then $Ax'(\lambda) - y$ is a gradient $\nabla d(\lambda)$ of the concave dual function $d(\lambda)$ at λ .

A Natural Attempt to find the saddle point $(x_{\star}, \lambda_{\star})$ is via *dual ascent*:

$$\boldsymbol{x}_{k+1} = \arg\min_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}_k),$$
 (18)

$$\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + t_{k+1} (\boldsymbol{A} \boldsymbol{x}_{k+1} - \boldsymbol{y}). \tag{19}$$

- For certain problem classes, this converges to the optimal $(x_{\star}, \lambda_{\star})$.
- However, unfortunately it fails for problems in our settings.

An Example of Failure

Consider the basis pursuit problem:

$$\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_{1}, \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}.$$

We have:

$$d(\boldsymbol{\lambda}) = \inf_{\boldsymbol{x}} \|\boldsymbol{x}\|_1 + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} \rangle = \inf_{\boldsymbol{x}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}).$$

The *dual ascent* algorithm:

- For certain problem classes, dual ascent yields efficient convergent algorithms to an optimal primal-dual solution $(x_{\star}, \lambda_{\star})$.
- However, it may *fail* for problems in structured signal recovery.

글 제 제 글 제

An Example of Failure

Consider the basis pursuit problem:

$$\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_{1}, \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}.$$

One can show that the dual function

$$d(\boldsymbol{\lambda}) = \inf_{\boldsymbol{x}} \|\boldsymbol{x}\|_1 + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} \rangle = \begin{cases} -\infty & \|\boldsymbol{A}^\top \boldsymbol{\lambda}\|_{\infty} > 1\\ -\langle \boldsymbol{\lambda}, \boldsymbol{y} \rangle & \|\boldsymbol{A}^\top \boldsymbol{\lambda}\|_{\infty} \le 1 \end{cases}$$

Whenever the dual ascent step (19) happens to produce a λ such that $\|A^*\lambda\|_{\infty} > 1$, the algorithm will break down.

< 回 > < 回 > < 回 > <

An Example of Failure

Consider the basis pursuit problem:

$$\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_{1}, \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y}.$$

One can show that the dual function

$$d(\boldsymbol{\lambda}) = \inf_{\boldsymbol{x}} \|\boldsymbol{x}\|_1 + \langle \boldsymbol{\lambda}, \boldsymbol{A}\boldsymbol{x} - \boldsymbol{y} \rangle = \begin{cases} -\infty & \|\boldsymbol{A}^\top \boldsymbol{\lambda}\|_\infty > 1\\ -\langle \boldsymbol{\lambda}, \boldsymbol{y} \rangle & \|\boldsymbol{A}^\top \boldsymbol{\lambda}\|_\infty \le 1 \end{cases}$$

Whenever the dual ascent step (19) happens to produce a λ such that $\|A^*\lambda\|_{\infty} > 1$, the algorithm will break down.

The reason is $g(x) = \|x\|_1$ here is not "strongly" convex enough to dominate the linear term $\langle \lambda, Ax \rangle$.

Remedy: Augmented Lagrangian

Definition (Augmented Lagrangian Function [Hestenes'69, Powell'69])

The augmented Lagrangian function is defined as

$$\mathcal{L}_{\mu}(oldsymbol{x},oldsymbol{\lambda}) \ := \ g(oldsymbol{x}) \ + \ \langleoldsymbol{\lambda},oldsymbol{A}oldsymbol{x}-oldsymbol{y}
angle^2 \ + \ rac{\mu}{2} \, \|oldsymbol{A}oldsymbol{x}-oldsymbol{y}\|_2^2 \, ,$$

where $\mu > 0$ is a penalty parameter.

The augmented Lagrangian can be regarded as the Lagrangian for

$$\min_{\boldsymbol{x}} \underbrace{g(\boldsymbol{x}) + \frac{\mu}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2}}_{\text{strongly convex}}, \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y},$$

which has the same optimal solution as the original un-penalized problem.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Augmented Lagrange Multiplier

Apply dual ascent to $\mathcal{L}_{\mu}({m x},{m \lambda})$ with a particular step size $t_{k+1}=\mu$,

$$\boldsymbol{x}_{k+1} \in \arg\min_{\boldsymbol{x}} \mathcal{L}_{\mu}(\boldsymbol{x}, \boldsymbol{\lambda}_k),$$
 (20)

$$\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + \mu \left(\boldsymbol{A} \boldsymbol{x}_{k+1} - \boldsymbol{y} \right). \tag{21}$$

Fact: x_{k+1} always minimizes the unaugmented Lagrangian $\mathcal{L}(x, \lambda_{k+1})$ at $\lambda \equiv \lambda_{k+1}$, because:

$$\begin{array}{lll} \mathbf{0} & \in & \partial \mathcal{L}_{\mu}(\boldsymbol{x}_{k+1},\boldsymbol{\lambda}_{k}), \\ & = & \partial g(\boldsymbol{x}_{k+1}) + \boldsymbol{A}^{*}\boldsymbol{\lambda}_{k} + \mu \boldsymbol{A}^{*}(\boldsymbol{A}\boldsymbol{x}_{k+1} - \boldsymbol{y}), \\ & = & \partial g(\boldsymbol{x}_{k+1}) + \boldsymbol{A}^{*}\boldsymbol{\lambda}_{k+1}, \\ & = & \partial \mathcal{L}(\boldsymbol{x}_{k+1},\boldsymbol{\lambda}_{k+1}). \end{array}$$

$oldsymbol{\lambda}_{k+1}$ is always feasible, no bad behaviors!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ● ○ ○ ○

Augmented Lagrange Multiplier

Augmented Lagrange Multipler (ALM)

Problem Class: $\min_{x} g(x)$ subject to Ax = y. with $g : \mathbb{R}^{n} \to \mathbb{R}$ convex and coercive, $y \in \operatorname{range}(A)$.

Basic Iteration: set

$$\mathcal{L}_{\mu}(oldsymbol{x},oldsymbol{\lambda}) = g(oldsymbol{x}) + \langle oldsymbol{\lambda},oldsymbol{A}oldsymbol{x} - oldsymbol{y}
angle^2 + rac{\mu}{2} \left\|oldsymbol{A}oldsymbol{x} - oldsymbol{y}
ight\|_2^2.$$

Repeat:

$$egin{aligned} & m{x}_{k+1} \in rg\min_{m{x}} \ \mathcal{L}_{\mu}(m{x},m{\lambda}_k), \ & m{\lambda}_{k+1} = m{\lambda}_k + \mu \, (m{A}m{x}_{k+1} - m{y}). \end{aligned}$$

Convergence Guarantee:

 $\{\boldsymbol{x}_k\}$ converges to an optimal solution at a rate O(1/k).

Example: ALM for Basis Pursuit

Augmented Lagrange Multipler (ALM) for BP

 Problem: min_x ||x||₁ subject to y = Ax, given y ∈ ℝ^m and A ∈ ℝ^{m×n}. The augmented Lagrangian is: L_μ(x, λ) = ||x||₁ + ⟨λ, Ax - y⟩ + μ/2 ||Ax - y||₂².
 Input: x₀ ∈ ℝⁿ, λ₀ ∈ ℝ^m, and β > 1.

3: for
$$(k = 0, 1, 2, \dots, K - 1)$$
 do

4:
$$x_{k+1} \leftarrow rg \min \mathcal{L}_{\mu_k}(x, \lambda_k)$$
 using APG.

5:
$$\boldsymbol{\lambda}_{k+1} \leftarrow \boldsymbol{\lambda}_k + \mu_k (\boldsymbol{A} \boldsymbol{x}_{k+1} - \boldsymbol{y}).$$

6:
$$\mu_{k+1} \leftarrow \min\{\beta \mu_k, \mu_{\max}\}.$$

- 7: end for
- 8: Output: $x_{\star} \leftarrow x_K$.

→ 冊 ▶ ★ 臣 ▶ ★ 臣 ▶ → 臣 → の Q ()

Application of ALM to the Two-Block Problem

$$\min_{\boldsymbol{x},\boldsymbol{z}} g(\boldsymbol{x}) + h(\boldsymbol{z}), \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} = \boldsymbol{y}.$$

Form the augmented Lagrangian

$$egin{aligned} \mathcal{L}_{\mu}(oldsymbol{x},oldsymbol{z},oldsymbol{\lambda}) &= g(oldsymbol{x}) + h(oldsymbol{z}) + \langle oldsymbol{A}oldsymbol{x} + oldsymbol{B}oldsymbol{z} - oldsymbol{y},oldsymbol{\lambda}
angle \ &+ rac{\mu}{2} \, \|oldsymbol{A}oldsymbol{x} + oldsymbol{B}oldsymbol{z} - oldsymbol{y}\|_2^2 \end{aligned}$$

Solve the problem via

 $egin{aligned} & (m{x}_{k+1},m{z}_{k+1}) \ \in \ rg\min_{m{x},m{z}} \ \mathcal{L}_{\mu}(m{x},m{z},m{\lambda}_k), & ext{(could be expensive)} \ & m{\lambda}_{k+1} \ = \ m{\lambda}_k \ + \ \mu_k \left(m{A}m{x}_{k+1} + m{B}m{z}_{k+1} - m{y}
ight). \end{aligned}$

Application of ALM to the Two-Block Problem

$$\min_{\boldsymbol{x},\boldsymbol{z}} g(\boldsymbol{x}) + h(\boldsymbol{z}), \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} = \boldsymbol{y}.$$

Form the augmented Lagrangian

$$egin{aligned} \mathcal{L}_{\mu}(oldsymbol{x},oldsymbol{z},oldsymbol{\lambda}) &= g(oldsymbol{x}) + h(oldsymbol{z}) + \langle oldsymbol{A}oldsymbol{x} + oldsymbol{B}oldsymbol{z} - oldsymbol{y},oldsymbol{\lambda}
angle \ &+ rac{\mu}{2} \, \|oldsymbol{A}oldsymbol{x} + oldsymbol{B}oldsymbol{z} - oldsymbol{y}\|_2^2 \end{aligned}$$

Solve the problem via

 $egin{aligned} & (m{x}_{k+1},m{z}_{k+1}) \ \in \ rg\min_{m{x},m{z}} \ \mathcal{L}_{\mu}(m{x},m{z},m{\lambda}_k), & ext{(could be expensive)} \ & m{\lambda}_{k+1} \ = \ m{\lambda}_k \ + \ \mu_k \left(m{A}m{x}_{k+1} + m{B}m{z}_{k+1} - m{y}
ight). \end{aligned}$

The primal subproblem for x does not have closed-form and could be expensive to solve.

60 / 77

< 口 > < 同 > < 回 > < 回 > < 回 > <

Alternating Directions Method of Multipliers (ADMM)

$$\min_{\boldsymbol{x},\boldsymbol{z}} g(\boldsymbol{x}) + h(\boldsymbol{z}), \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} = \boldsymbol{y}.$$

Remedy for solving $\min_{\boldsymbol{x},\boldsymbol{z}} \mathcal{L}_{\mu}(\boldsymbol{x},\boldsymbol{z},\boldsymbol{\lambda}_k)$:

• fix z and λ , minimize x:

$$\boldsymbol{x}_{k+1} \in \arg\min_{\boldsymbol{x}} \mathcal{L}_{\mu}(\boldsymbol{x}, \boldsymbol{z}_k, \boldsymbol{\lambda}_k),$$

• fix x and λ . minimize z:

$$oldsymbol{z}_{k+1} \in rg\min_{oldsymbol{z}} \mathcal{L}_{\mu}(oldsymbol{x}_{k+1},oldsymbol{z},oldsymbol{\lambda}_k),$$

• fix x and z, take a dual ascent step on λ :

$$\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + \mu_k \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mu}(\boldsymbol{x}_{k+1}, \boldsymbol{z}_{k+1}, \boldsymbol{\lambda}).$$

A > 4

Solutions for Subproblems via Proximal Operators

• fix z and λ , minimize x:

$$oldsymbol{x}_{k+1} = rgmin_{oldsymbol{x}} \left\{ g(oldsymbol{x}) + rac{\mu}{2} \left\| oldsymbol{A}oldsymbol{x} + oldsymbol{B}oldsymbol{z}_k - oldsymbol{y} + rac{1}{\mu}oldsymbol{\lambda}_k
ight\|_2^2
ight\},$$

• fix x and λ , minimize z:

$$oldsymbol{z}_{k+1} \;=\; rg\min_{oldsymbol{z}}\; \left\{h(oldsymbol{z})+rac{\mu}{2}\left\|oldsymbol{A}oldsymbol{x}_{k+1}+oldsymbol{B}oldsymbol{z}-oldsymbol{y}+rac{1}{\mu}oldsymbol{\lambda}_k
ight\|_2^2
ight\},$$

• fix x and z, take a dual ascent step on λ :

$$\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + \mu_k \left(\boldsymbol{A} \boldsymbol{x}_{k+1} + \boldsymbol{B} \boldsymbol{z}_{k+1} - \boldsymbol{y} \right).$$

A ► <

Solutions for Subproblems via Proximal Operators

• fix z and λ , minimize x:

$$oldsymbol{x}_{k+1} = rgmin_{oldsymbol{x}} \left\{ g(oldsymbol{x}) + rac{\mu}{2} \left\| oldsymbol{A}oldsymbol{x} + oldsymbol{B}oldsymbol{z}_k - oldsymbol{y} + rac{1}{\mu}oldsymbol{\lambda}_k
ight\|_2^2
ight\},$$

• fix x and λ , minimize z:

$$oldsymbol{z}_{k+1} = rgmin_{oldsymbol{z}} \left\{ h(oldsymbol{z}) + rac{\mu}{2} \left\| oldsymbol{A} oldsymbol{x}_{k+1} + oldsymbol{B} oldsymbol{z} - oldsymbol{y} + rac{1}{\mu} oldsymbol{\lambda}_k
ight\|_2^2
ight\},$$

• fix x and z, take a dual ascent step on λ :

$$\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + \mu_k \left(\boldsymbol{A} \boldsymbol{x}_{k+1} + \boldsymbol{B} \boldsymbol{z}_{k+1} - \boldsymbol{y} \right).$$

The solution of each subproblem is the proximal operator, which has closed-form solution for structured g and h!

Optimization with Separable Structures

The augmented Lagrangian $\mathcal{L}_{\mu}(oldsymbol{x},oldsymbol{z},oldsymbol{\lambda})$ is:

$$\mathcal{L}_{\mu}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{\lambda}) = g(\boldsymbol{x}) + h(\boldsymbol{z}) + \langle \boldsymbol{\lambda}, \boldsymbol{A} \boldsymbol{x} + \boldsymbol{B} \boldsymbol{z} - \boldsymbol{y}
angle + rac{\mu}{2} \| \boldsymbol{A} \boldsymbol{x} + \boldsymbol{B} \boldsymbol{z} - \boldsymbol{y} \|_{2}^{2}.$$

The alternating directions method of multipliers (ADMM) conducts a simple, alternating iteration:

$$\boldsymbol{z}_{k+1} \in \arg\min_{\boldsymbol{z}} \mathcal{L}_{\mu}(\boldsymbol{x}_k, \boldsymbol{z}, \boldsymbol{\lambda}_k),$$
 (22)

$$\boldsymbol{x}_{k+1} \in \arg\min_{\boldsymbol{x}} \mathcal{L}_{\mu}(\boldsymbol{x}, \boldsymbol{z}_{k+1}, \boldsymbol{\lambda}_k),$$
 (23)

$$\boldsymbol{\lambda}_{k+1} = \boldsymbol{\lambda}_k + \mu \left(\boldsymbol{A} \boldsymbol{x}_{k+1} + \boldsymbol{B} \boldsymbol{z}_{k+1} - \boldsymbol{y} \right). \tag{24}$$

This is also known as the Gauss-Seidel iteration.

ADMM converges at a rate of O(1/k). (proof no picnic⁶)

Scalable Convex Optimization Methods

63 / 77

Example I: Basis Pursuit

Basis pursuit denoising (let z = x):

$$\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1} \\ \Leftrightarrow \quad \min_{\boldsymbol{x}, \boldsymbol{z}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \underbrace{\lambda \|\boldsymbol{z}\|_{1}}_{h(\boldsymbol{z})}, \quad \text{s.t.} \quad \boldsymbol{x} - \boldsymbol{z} = \boldsymbol{0}.$$

• Form the augmented Lagrangian:

$$\mathcal{L}_{\mu}(oldsymbol{x},oldsymbol{z},oldsymbol{eta}) \; = rac{1}{2} \, \|oldsymbol{A}oldsymbol{x}-oldsymbol{y}\|_2^2 + \lambda \, \|oldsymbol{z}\|_1 + \langle oldsymbol{eta},oldsymbol{x}-oldsymbol{z}
angle + rac{\mu}{2} \, \|oldsymbol{x}-oldsymbol{z}\|_2^2 \, .$$

< (1) × <

э

Example I: Basis Pursuit Denoising

• Fix $oldsymbol{z}_k$ and $oldsymbol{eta}_k$, find $oldsymbol{x}_{k+1}$ via

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \arg\min_{\boldsymbol{x}} \ \mathcal{L}_{\mu}(\boldsymbol{x}, \boldsymbol{z}_{k}, \boldsymbol{\beta}_{k}) \\ &= \arg\min_{\boldsymbol{x}} \ \left\{ \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \frac{\mu}{2} \left\| \boldsymbol{x} - \boldsymbol{z}_{k} + \frac{1}{\mu} \boldsymbol{\beta}_{k} \right\|_{2}^{2} \right\}. \end{aligned}$$

• Fix $oldsymbol{x}_{k+1}$ and $oldsymbol{eta}_k$, find $oldsymbol{z}_{k+1}$ via

$$egin{aligned} oldsymbol{z}_{k+1} &= rg\min_{oldsymbol{z}} \ \mathcal{L}_{\mu}(oldsymbol{x}_{k+1},oldsymbol{z},oldsymbol{eta}_k) \ &= rg\min_{oldsymbol{z}} \left\{ \lambda \left\|oldsymbol{z}
ight\|_1 + rac{\mu}{2} \left\|oldsymbol{x}_{k+1} - oldsymbol{z} + rac{1}{\mu}oldsymbol{eta}_k
ight\|_2^2
ight\}. \end{aligned}$$

• Fix x_{k+1} and z_{k+1} , take a dual ascent step on eta:

$$m{eta}_{k+1} \;=\; m{eta}_k \;+\; \mu_k \left(m{x}_{k+1} - m{z}_{k+1}
ight).$$

Example I: Basis Pursuit

• Fix $oldsymbol{z}_k$ and $oldsymbol{eta}_k$, find $oldsymbol{x}_{k+1}$ via

$$\boldsymbol{x}_{k+1} = (\boldsymbol{A}^T \boldsymbol{A} + \mu \boldsymbol{I})^{-1} (\boldsymbol{A}^T \boldsymbol{y} + \mu \boldsymbol{z}_k - \boldsymbol{\beta}_k)$$

• Fix $oldsymbol{x}_{k+1}$ and $oldsymbol{eta}_k$, find $oldsymbol{z}_{k+1}$ via

$$oldsymbol{z}_{k+1} \ = \ \mathrm{prox}_{\lambda\mu^{-1}\|\cdot\|_1}\left(oldsymbol{x}_{k+1} + rac{1}{\mu}oldsymbol{eta}_k
ight)$$

• Fix x_{k+1} and z_{k+1} , take a dual ascent step on β :

$$\boldsymbol{\beta}_{k+1} = \boldsymbol{\beta}_k + \mu_k \left(\boldsymbol{x}_{k+1} - \boldsymbol{z}_{k+1} \right).$$

э

$$\min_{\boldsymbol{L},\boldsymbol{S}} \|\boldsymbol{L}\|_* + \lambda \|\boldsymbol{S}\|_1, \quad \text{s.t.} \quad \boldsymbol{L} + \boldsymbol{S} = \boldsymbol{Y}.$$

Form the augmented Lagrangian: •

$$egin{aligned} \mathcal{L}_{\mu}(oldsymbol{L},oldsymbol{S},oldsymbol{\Lambda}) \ &= \|oldsymbol{L}\|_{*} + \lambda \, \|oldsymbol{S}\|_{1} + \langleoldsymbol{\Lambda},oldsymbol{L}+oldsymbol{S}-oldsymbol{Y}
angle \ &+ rac{\mu}{2} \, \|oldsymbol{L}+oldsymbol{S}-oldsymbol{Y}\|_{F}^{2} \,. \end{aligned}$$

< (1) × <

э

$$\min_{\boldsymbol{L},\boldsymbol{S}} \ \left\|\boldsymbol{L}\right\|_* + \lambda \left\|\boldsymbol{S}\right\|_1, \quad \text{s.t.} \quad \boldsymbol{L} + \boldsymbol{S} = \boldsymbol{Y}.$$

• Fix S_k and Λ_k , find L_{k+1} via

$$\begin{split} \boldsymbol{L}_{k+1} &= \arg\min_{\boldsymbol{L}} \ \mathcal{L}_{\mu}(\boldsymbol{L},\boldsymbol{S}_{k},\boldsymbol{\Lambda}_{k}) \\ &= \arg\min_{\boldsymbol{L}} \left\{ \|\boldsymbol{L}\|_{*} + \frac{\mu}{2} \left\| \boldsymbol{L} + \boldsymbol{S}_{k} - \boldsymbol{Y} + \frac{1}{\mu}\boldsymbol{\Lambda}_{k} \right\|_{F}^{2} \right\} \\ &= \operatorname{prox}_{\mu^{-1} \|\cdot\|_{*}} \left(\boldsymbol{Y} - \boldsymbol{S}_{k} - \mu^{-1}\boldsymbol{\Lambda}_{k} \right). \end{split}$$

イロト イボト イヨト イヨト

æ

$$\min_{\boldsymbol{L},\boldsymbol{S}} \ \left\|\boldsymbol{L}\right\|_* + \lambda \left\|\boldsymbol{S}\right\|_1, \quad \text{s.t.} \quad \boldsymbol{L} + \boldsymbol{S} = \boldsymbol{Y}.$$

• Fix $oldsymbol{L}_{k+1}$ and $oldsymbol{\Lambda}_k$, find $oldsymbol{S}_{k+1}$ via

$$\begin{aligned} \boldsymbol{S}_{k+1} &= \arg\min_{\boldsymbol{S}} \mathcal{L}_{\mu}(\boldsymbol{L}_{k+1}, \boldsymbol{S}, \boldsymbol{\Lambda}_{k}) \\ &= \arg\min_{\boldsymbol{S}} \left\{ \lambda \left\| \boldsymbol{S} \right\|_{1} + \frac{\mu}{2} \left\| \boldsymbol{L}_{k+1} + \boldsymbol{S} - \boldsymbol{Y} + \frac{1}{\mu} \boldsymbol{\Lambda}_{k} \right\|_{F}^{2} \right\} \\ &= \operatorname{prox}_{\lambda \mu^{-1} \| \cdot \|_{1}} \left(\boldsymbol{Y} - \boldsymbol{L}_{k+1} - \mu^{-1} \boldsymbol{\Lambda}_{k} \right). \end{aligned}$$

イロト イポト イヨト イヨト

æ

• Fix $oldsymbol{S}_k$ and $oldsymbol{\Lambda}_k$, find $oldsymbol{L}_{k+1}$ via

$$oldsymbol{L}_{k+1} \;=\; \mathrm{prox}_{\mu^{-1} \|\cdot\|_{*}} \left(oldsymbol{Y} - oldsymbol{S}_{k} - \mu^{-1} oldsymbol{\Lambda}_{k}
ight).$$

• Fix $oldsymbol{L}_{k+1}$ and $oldsymbol{\Lambda}_k$, find $oldsymbol{S}_{k+1}$ via

$$S_{k+1} = \operatorname{prox}_{\lambda \mu^{-1} \parallel \cdot \parallel_1} \left(Y - L_{k+1} - \mu^{-1} \Lambda_k \right).$$

• Fix L_{k+1} and S_{k+1} , take a dual ascent step on Λ :

$$\boldsymbol{\Lambda}_{k+1} = \boldsymbol{\Lambda}_k + \mu_k \left(\boldsymbol{L}_{k+1} + \boldsymbol{S}_{k+1} - \boldsymbol{Y} \right).$$

< (17) > < (17) > <

- 1: Problem: $\min_{\boldsymbol{L},\boldsymbol{S}} \mathcal{L}_{\mu}(\boldsymbol{L},\boldsymbol{S},\boldsymbol{\Lambda})$, given \boldsymbol{Y} , $\lambda, \mu > 0$. 2: Input: $\boldsymbol{L}_{0}, \boldsymbol{S}_{0}, \boldsymbol{\Lambda}_{0} \in \mathbb{R}^{m \times n}$. 3: for $(k = 0, 1, 2, \dots, K - 1)$ do 4: $\boldsymbol{L}_{k+1} \leftarrow \operatorname{prox}_{\mu^{-1} \|\cdot\|_{*}} [\boldsymbol{Y} - \boldsymbol{S}_{k} - \mu^{-1} \boldsymbol{\Lambda}_{k}]$. 5: $\boldsymbol{S}_{k+1} \leftarrow \operatorname{prox}_{\lambda \mu^{-1} \|\cdot\|_{*}} [\boldsymbol{Y} - \boldsymbol{L}_{k+1} - \mu^{-1} \boldsymbol{\Lambda}_{k}]$. 6: $\boldsymbol{\Lambda}_{k+1} \leftarrow \boldsymbol{\Lambda}_{k} + \mu(\boldsymbol{L}_{k+1} + \boldsymbol{S}_{k+1} - \boldsymbol{Y})$. 7: end for
 - $0 \quad \mathbf{O}_{\mathbf{U}} = \mathbf{U}_{\mathbf{U}} = \mathbf{U}_{\mathbf{U}$
- 8: Output: $L_{\star} \leftarrow L_K; S_{\star} \leftarrow S_K.$

Summary for ADMM

$$\min_{\boldsymbol{x},\boldsymbol{z}} g(\boldsymbol{x}) + h(\boldsymbol{z}), \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} = \boldsymbol{y}.$$

- ADMM is easy to implement and use, and scalable for large-scale problem.
- ADMM is slow to converge to high accuracy (with O(1/k) convergence rate).

1 Motivating Examples for Recovery of Low-Dim Models

- **(**Accelerated) Proximal Methods
- **3** Alternating Direction Methods of Multipliers (ADMM)

4 Summary & Extensions

< (17) × <

Optimization Challenges for Structured Data Recovery

• Challenge of Scale: scale algorithms to when *n* is very large.

Second order methods \implies First order methods...

• Nonsmoothness: first order methods are slow for nonsmooth.

that we deal with proximal gradient method:

Optimization Challenges for Structured Data Recovery

• Challenge of Scale: scale algorithms to when *n* is very large.

Second order methods \implies First order methods...

• Nonsmoothness: first order methods are slow for nonsmooth.

that we deal with proximal gradient method:

• Equality Constraints with Separable Structures: ADMM

$$\min_{\boldsymbol{x},\boldsymbol{z}} g(\boldsymbol{x}) + h(\boldsymbol{z}), \quad \text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{z} = \boldsymbol{y}.$$

Other Ideas for Better Scalability

Typical optimization problem: $\min_{\boldsymbol{x}} f(\boldsymbol{x}) = \frac{1}{m} \sum_{i=1}^{m} h_i(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathbb{R}^n.$

Complexity = per iteration cost \times # of iterations.

• Block Coordinate Descent reduces dependency on the dimension n:

$$O(n) \to O(n^{1/2}).$$

• **Stochastic Gradient Descent** (with variance reduction) reduces dependency on sample size *m*:

$$O(m) \to O(m^{1/2}).$$

• Acceleration Schemes reduce the number of iterations k:

$$O(\epsilon^{-2}) \to O(\epsilon^{-1/2}).$$

Nonconvex programs are a different story... (later, Lecture 3).

Algorithmic Unrolling Beyond LISTA

1: **Problem:** $\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} + \lambda \|\boldsymbol{x}\|_{1}$, given $\boldsymbol{y} \in \mathbb{R}^{m}$, $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. 2: **Input:** $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$ and $L \geq \lambda_{\max}(\boldsymbol{A}^{*}\boldsymbol{A})$. 3: for $(k = 0, 1, 2, \dots, K - 1)$ do

4:
$$\boldsymbol{w}_k \leftarrow \boldsymbol{x}_k - rac{1}{L} \boldsymbol{A}^* (\boldsymbol{A} \boldsymbol{x}_k - \boldsymbol{y}).$$

- 5: $\boldsymbol{x}_{k+1} \leftarrow \mathsf{soft}_{\lambda/L}(\boldsymbol{w}_k).$
- 6: end for
- 7: Output: $x_{\star} \leftarrow x_K$.

The unrolled iterations resemble a deep neural network!

We can optimize the optimization path of ISTA using supervised learning⁷:

$$oldsymbol{w}_k \leftarrow oldsymbol{x}_k - rac{1}{L}oldsymbol{A}^*(oldsymbol{A}oldsymbol{x}_k - oldsymbol{y}) = \underbrace{ig(oldsymbol{I} - rac{1}{L}oldsymbol{A}^*oldsymbol{A}ig)}_{ ext{learnable parameter }oldsymbol{S}} oldsymbol{x}_k + \underbrace{rac{1}{L}oldsymbol{A}^*oldsymbol{A}oldsymbol{y}}_{ ext{learnable parameter }oldsymbol{S}}$$

⁷Learning Fast Approximations of Sparse Coding, Karol Gregor and ¥ann LeCun, ICM 2010، الع

Summary

Next lecture: Learning Low-dimensional Models via Nonconvex Optimization.

Thank You! Questions?

▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶