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The Signal Processing Pipeline

Sensing, Compression

1

Denoising, Deblurring, Superresolution

1

Source Separation, Error Correction

!

Inference, Prediction

[ The pursuit of low-dimensional structure is a universal task!




Historical Context: Quest for Low-Dimensionality

Fourier

=
Wavelets Ss==c==n

X-lets: Curvelets, Contourlets, Bandelets, ...

Learned Dictionaries

Learned Reconstruction Procedures

A continuing quest for sparse signal representations
leveraging mathematics + massive data and computation!




Historical Context: Sparsity in Neuroscience

Dogma for natural vision [Barlow 1972]: “..

‘

to represent the input as

completely as possible by activity in as few neurons as possible.”

Sparse coding

Reconstruction

w8 L

e

¥

Find

sparse {x;} such that

n
Yy = ina@- +e €R™ (1)
i=1

[Nature, Olshausen and Field 1996.]



Historical Context: Sparse and Low-d in Statistics

Principal Component Analysis
Linear correlations in data (low-rank model!)

Data space R™

range(X)
dimension = rank(X)

[Pearson 1901], [Hotelling 1933], [Eckart and Young 1936]

Best Subset Selection
Select a few relevant predictors (sparse model!)

[Hocking, Leslie, and Beale 1967], Stagewise pursuit [Efroymson 1966],
Lasso [Tibshirani 1996], Basis pursuit [Chen, Donoho, and Saunders 1998]



Historical Context: Estimation, Errors, Missing Data

A long and rich history of robust estimation with error correction and
missing data imputation:

R. J. Boscovich. De calculo probailitatum que respondent
diversis valoribus summe errorum post plures observationes Alz + @

..., before 1756

{5) A. Legendre. Nouvelles methodes pour la determination des
ﬁ orbites des cometes, 1806 over-determined

+ dense, Gaussian
C. Gauss. Theory of motion of heavenly bodies, 1809

A. Beurling. Sur les integrales de Fourier absolument
convergentes et leur application a une transformation A + 4>
functionefle, 1938 & \ /

underdetermined
+ sparse, Laplacian

B. Logan. Properties of High-Pass Signals, 1965




The Modern Era: Massive Data and Computation

Mathematical Theory

(high-dimensional statistics, convex geometry,
measure conceltration, combinatorics...)
a) Re ns

t PCA, Randon

) BIG DA_TA Cloud Computing
(images, videos, (parallel, distributed, Appllcatlons
voices, texts, scalable platforms) & Services
biomedical, geospatial, (data processing,
consumer data...) analysis, compression,

knowledge discovery,
search, recognition...)

Computational Methods ;
(convex optimization, first-order algorithms, - [
random sampling, deep networks...) H b




Motivating Issues |: Correctness?

[ How can we correctly compute with low-dimensional structure?

e

Sparse Vectors Low-rank Matrices Nonlinear Manifolds

[ Low-d. structure leads to principled answers and practical methods!




Motivating Issues |I: Computational Efficiency?
Computational Tractability: easy vs./ hard problems:

Convexity

Benign Nonconvexity
Efficient, scalable methods leveraging problem geometry:

ex”

o>



Motivating Issues Ill: Resource Efficiency?

Data Efficiency: How many samples? How many labels?
Architecture Efficiency: How deep? How wide? What operations?

=

Data samples z;

Low-d. structure of data sets fundamental resource requirements
for sensing and learning.




Motivating Issues IV — Robustness?

Robustness: to errors, outliers, missing data:

5 o ?
?
5 7 ... 7

Robustness and deep networks?

N W
IS

+.007 =

“gibbon™

“nenatode’
993 % confidence

“pands”
57.7% confidence 8.2% confidence

From [Goodfellow, Shlens and Szegedy, 2015]

Low-d structure of signal and error can lead to principled

proaches to robustness.




Motivating Issues V: Invariance?

Transformations of the signal domain:

can cause still lead to disturbing failures:

Shift
P(binoculars)

From [Azulay and Weiss, 2019] Horizontal Shift

[ Low-d. structure in texture / appearance and transformation!




This Tutorial: The Plan
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Lecture 4:
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Introduction to Low-D Models

Convex Optimization for Low-D Models
Nonconvex Optimization and Low-D Models
Learning Deep Networks for Low-D Structure

Designing Deep Networks for Low-D Structure



This Tutorial: Resources

John Wright and Yi Ma

High-Dimensional
High-Dimensional Data Analysis Data Analysis
with Low-Dimensional Models

Principles, Computation, and Applications

with

John Wright and Yi Ma Low-Dimensional
Cambridge University Press, 2022. —
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This Tutorial: The Plan

Lecture 1: Introduction to Low-D Models

Lecture 2: Convex Optimization for Low-D Models

Lecture 3: Nonconvex Optimization and Low-D Models

Lecture 4: Learning Deep Networks for Low-D Structure

Lecture 5: Designing Deep Networks for Low-D Structure



Sparse Signal Models

Sparse Signals: Call x, € R" sparse if it has only a few nonzero entries:

II“‘.‘ ‘lr I ’:‘u I

{lllu‘r’llJ

dense vector sparse vector compressible vector

Sparse Recovery: Given linear measurements y € R™ of a sparse signal

T,
" Em
L =
I _ II i
B ] II :
1 C
1
1
Yy = A _ x,
observation measurement matrix  ynknown

recover x,.



Sparsity |: Neural Spikes

Neural Calcium Signal Firing Pattern
s ||
2% | ~
s | =~ *
§¢ \”ﬁ W N \
0 500 1,000 0 100
time (msec) time (msec)
= a * xr
observation firing pattern sparse spike train

Temporal Spike Train

500
time (msec)

z .
noise

Sparse and low-dimensional models arise naturally from physical

structure of data!




Sparsity |: Neural Spikes and Beyond

Neural Calcium Signal Firing Pattern Temporal Spike Train
g 2 w\ | T
%\J | R | ﬁh ~ * |
Sl AR |
2
W v 1]
0 500 1,000 0 100 0 500 1,000
time (msec) time (msec) time (msec)
TEM Image NaFeAs Defect Pattern Defect Location

~ *
Camera Motion Blur Original Image
~ *

[ Common Convolutional Model: y = a *  + z, with « sparse.




Sparsity |I: Faces and Error Correction

observation clean data sparse error

[ Two types of structure: sparsity of identity and sparsity of errors.




Sparsity |I: Faces and Error Correction

sparse error

observation clean data

[ Two types of structure: sparsity of identity and sparsity of errors.

Concatenate gallery images of n subjects into a large “dictionary”:

B:[Bl|BQ|-'-|Bn]€Rmxn

all training images



Sparsity |I: Faces and Error Correction

Find sparse solutions (x, €) to the linear system:

Recognition rate (%)

y = Bz+e = [B,I][Z].

60

50

g a0
. m o

2 ICA 14NN
= LNMF + NN

] 10 20 30 40 50 60 70 80 %0
Percent occluded (%)

[ Correcting Gross Errors is also a sparse recovery problem!




Sparsity |ll: Magnetic Resonance Imaging

Patient Table

Figure: Left: Key components. Right:

The three-axis gradient coils.



Sparsity |ll: Magnetic Resonance Imaging

Simplified mathematical model for MRI:

y=F](u) = / I(v) exp(—i2ru*v)dv, wu,v € R?

y= : = : = Fyll], m < N2

Cartesian Sample
on the xy-plane

Fourier
Reconstruction

Figure: Recovering MRI image from Fourier measurements.



Sparsity |ll: Structure of MR Images

Express I as a superposition of basis functions ¥ = {4, ..., Y2}
N2

image ;—1 ith basis signal  i-th coefficient

Coefficient Magnitude

T S
(Sorted) Coefficient Index ~ «i0*
image I(v) wavelet coefficients @: I = ¥[z].

Many natural signals become sparse or compressible in an appro-
priately designed transform domain!




Sparsity Ill: Image Reconstruction by Sparse Recovery

= Fulll],

observed Fourier coefficients
= ]:U[¢1$1+ +¢N2$N2],
= Fulti]rr + -+ Fultone]zne,
= [l |- | Fulwne]| e

matrix A € RmXNZ, m < N2,
= Ax. (2)

x is sparse or approximately sparse!

Compressed sensing: the number of measurements m for accurate
reconstruction should be dictated by signal complexity




Sparsity IV: Image Patches

Denoising given I,oisy = Iciean + 2 ... break into patches yi, ...

Yi = Yiclean T 2i = A x Li + zi.
patch dictionary sparse coefficient vector

afl
]
]

|
u
-

I fal ]

=

Figure: Left: noisy input; middle: denoised; right: learned patch dictionary.

Natural signals are challenging to model analytically = can learn
the sparse model from data!

Figure: [Mairal, Elad, Sapiro '08]




Measuring Sparsity: " Norm

dense vector sparse vector compressible vector

Def: the (% “norm” ||z||o is the number of nonzero entries in the

Connection to /P norms

el = (5 lal?) " %

12l = limy, |5

vector x: |||, = #{i | =(i) # 0}.

The P balls.




Sparse Recovery: ¢’ minimization

Computational Principle: seek the sparsest signal consistent with
our observations:

& = argmin |[z]|p st. Az =y.

Brute force exhaustive search: try all possible sets of nonzero entries

Ay =y? VIC{Ll,....n}, | <Ek.



Sparse Recovery: ¢/’ minimization

Computational Principle: seek the sparsest signal consistent with
our observations:

& = argmin |[z]|p st. Az =y.

Brute force exhaustive search: try all possible sets of nonzero entries

Ay =y? VIC{Ll,....n}, | <Ek.

Theory: 0 recovers any sufficiently sparse
signal! For generic A, success when
[®ollo < 5




¢/ Minimization is NP-hard

Theorem (Hardness of £° Minimization)

The £°-minimization problem min ||z||o s.t. Ax = y is (strongly) NP-hard.

Proof: Reducible from Exact 3-Set Cover (E3C) problem.

@xzoJHRI

1 10
(@ @) ©

— O =) O O
8 O~ O

O OO = =

—_ == O O

SV = = =



¢/ Minimization is NP-hard

Theorem (Hardness of /° Minimization)

The £°-minimization problem min ||z||o s.t. Ax = y is (strongly) NP-hard.

Proof: Reducible from Exact 3-Set Cover (E3C) problem.

o2 JHEE
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(@ @) ©

0
0
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— O =) O O
8 O~ O

O OO = =

—_ == O O

0

SV = = =

In high dimensions, need to pay attention to both statistical and
computational efficiency!




Convex Relaxation: /! Minimization

Intuitive reasons why ¢° minimization:
min ||z|o subject to Az =y. (3)

is very challenging:

/% is nonconvex, discontinuous, not amenable to local search
methods such as gradient descent.




Convex Relaxation: /! Minimization

For minimizing a generic function: min f(x),z € C (a convex set), local
methods: x| = x — tV f(x)) succeed only if f has “nice” geometry:

convex nonconvex

Need to formulate for computational efficiency!
® | ectures 1-2: convex relaxations for sparse, low-rank models

® | ectures 3-5: benign nonconvex formulations for nonlinear
models




Convex Relaxation: /! Minimization

Largest convex
lower bound
Convex functions
lower bounding ||z||o
x

Figure: Convex surrogates for the ¢° norm. ||z||; is the convex envelope of
lz|ly on Boo.

N~

Efficient convex relaxation:
min ||x||; subjectto Az =1y.

Solvable quickly at large scale using dedicated methods (Lecture 2).




Minimizing the /! Norm: Simulations

Solve: min|z|; st Az=wuy.

A is of size 200 x 400. Fraction of success across 50 trials.

1

0.8

0.6

0.4

Fraction of successes

0.2+ B

U 1 | Il b
0 20 40 60 80 100 120 140 160 180 200

Number of nonzero entries k = [|@ol|,

Experiment:

¢* minimization recovers any sufficiently sparse signal?




Geometric Intuition: Coefficient Space
Given y = Az, € R™ with x, € R" sparse:

min ||x||; subjectto Az =1y. (5)
The space of all feasible solutions is an affine subspace:

S={x| Az =y} ={x,} +null(A) CR". (6)

Feasible set
Coeflicient

S={z,}+mull(A)
space R™

A ball
Bi={z |||, <1}



Geometric Intuition: Coefficient Space

Gradually expand a ¢! ball of radius ¢ from the origin 0:
t-Bi={z|e], <t} CR"

till its boundary first touches the feasible set S:



Geometric Intuition: ¢! vs. (*?
A: minlz|; subjectto Ax=y.
B: min|x|2 subjectto Az =1y

A L1 regularization B L2 regularization

2 T2

NVAN N

¢ picks out sparse signals, because the ¢! ball is pointy!




Theory: Isometry Principles o o ball B,

Say that A satisfies the restricted

isometry property of order k

with coefficient ¢ if for all k-sparse x, embedding A C

(1-0)ll=|3 < |Az[3 < A+ o)} — A

Theorem (RIP = ¢! succeeds)

Suppose that 8o1,(A) < /2 — 1. Then £* minimization recovers any
k-sparse signal x!



Theory: Random Sensing

Theorem (RIP of Gaussian Matrices)

If A € R™*"™ with entries independent N (0, n%) random variables, with
high probability, 6,(A) < &, provided m > Cklog(n/k)/§?.

— ('-minimization recovers k-sparse vectors from about
klog(n/k) measurements (nearly minimal)!

Extensions: other distributions, structured random matrices.



From Sparse Recovery to Low-Rank Recovery

Recovering a sparse signal x,:

Data space R™

Yy = A Lo
observation unknown
where A € R™*" is a linear map. k

Recovering a low-rank matrix X,:

y :A[ X, ]
observation unknown range(X)

dimension = rank(X)

where A : R™*"2 — R™ jis a linear map.



Low-Rank |: Rank and Geometry
\thr

l./
Normal vector v;

Images y; under

different lighting [;

Lad1l
N\ /7

Pixel i y;(i) = [os (i, 15)]+-
Intensity at pixel @

. -
Object shape and albedo

Multiple images of a Lambertian object with varying light:

Y = Po[NL], X = NL has rank 3.

Low-rank model from physical constraints (3 degrees of freedom
in point illumination)

See also: multiview geometry, system identification, sensor positioning...



Low-Rank II: Rank and Collaborative Filtering

5 3 . 5 ... 5
£ @ 2 . 4 4 2
R I = Po ,
5 7 K 556 ... 3
Complete Ratings X

T [ U =
ol ~ A |

Ttems
Observed (Incomplete) Ratings Y

Y :PQ[ X

Complete ratings

We observe:
Observed ratings

where Q = {(4,) | user i has rated product j}.

Low-rank model: user preferences are linearly correlated; a few
factors predict preferences (Y;; = u; vj;, with u;,v; € R").

See also: latent semantic analysis, topic modeling...




Rank and Singular Value Decomposition

Theorem (Compact SVD)

Let X € R™*"2 pe a matrix, and r = rank(X). Then there exist
Y = diag(o1, ..., 0,) with numbers oy > 09 > --- > 0, > 0 and matrices
UcRX" 'V € R®%" sych that U*U = I, V*V =1 and

X = USV* = > o},
=1

Low-rank is sparsity of the singular values: rank(X) = |o(X)||o!

Many of the same tools and ideas apply!
Computing SVD: Nice Nonconvex Problem (Lecture 3)



Affine Rank Minimization

Problem: recover a low-rank matrix X, from linear measurements:
minrank(X) subjectto A[X]|=1y

where y € R™ is an observation and A : R"*"2 — R™ is linear.

\

General linear map: A[X]| = ((A1, X),...,(An, X)), A; € Rmxn2,

NP-Hard in general, by reduction from ¢ minimization, using that
rank(X') = [lo (X)), -

Let's seek a tractable surrogate...



Convex Relaxation: Nuclear Norm Minimization
Replace the rank, which is the Y norm o(X) with the ¢! norm of o(X):
Nuclear norm: || X |, = [lo(X)[|; = > o4(X).

Also known as the trace norm, Schatten 1-norm, and Ky-Fan k-norm.

Nuclear norm minimization problem:

min || X||, subjectto A[X]|=1y.

Geometry of nuclear norm minimization:

Nuclear norm ball B, = {X | || X || < 1}




Low-Rank Recovery with Generic Measurements

¢ Rank Restricted Isometry Property: for all rank-r X,
(1= Xr < [AX][| < (1 +0)|IX]|[r

e Rank RIP = accurate recovery: if d4.(A) < v/2 — 1, nuclear
norm minimziation recovers any rank-r X,.

¢ Random linear maps have rank-RIP if
A[X] = (<A17 X>7 MR <A’m7 X))

with Aq,..., A,, independent Gaussian matrices, A has rank-RIP
with high probability when m > C(ny + na)r/52.

Nuclear norm minimization recovers low-rank matrices from near
minimal number m ~ r(n; + ng — r) of generic measurements.




Generic vs. Structured Measurements

‘m 3 ... 7
Yi = [:]’Xo [-X ?2...4
A; random =Eyu B

Matrix Sensing Matrix Completion

Rank-RIP: no low-rank X in null(A).
Matrix completion: 3 rank-1 X in null(A). E.g., X = E;;, (i,7) ¢ .

[ =—> Matrix completion does not have restricted isometry property!

Analogous instances: superresolution of point sources, sparse spike
deconvolution, analysis of dictionary learning methods.



Theory for Matrix Completion

Theorem

With high probability, nuclear norm minimization recovers an n X n,
v-incoherent, rank-r matrix from a random subset of entries, of size

m > Cnrvlog? n.

€;
Restrict to incoherent X, )
ies! /
(not concentrated on a few entries!) Poules)
Proof ideas: local isometry plus clever
use of convexity and probability. o )
v = max{® max|[Pues,

n IIl;LX || Pve; Hﬁ}
T

M, = {X | rank(X) =r}



Parallelism between Rank and Sparsity

Sparse Vector

Low-rank Matrix

Low-dimensionality of

individual signal x

a set of signals X

Compressive sensing

y=Ax

Y = A(X)

Low-dim measure

29 norm ||zl

rank(X)

Convex surrogate

2t norm ||z||;

nuclear norm || X ||.

Success conditions (RIP)

Sor(A) > V2 -1

547‘(A) > \@_ 1

Random measurements

m = O(klog(n/k))

m = O(nr)

Stable/Inexact recovery

y=Ax+z

Y = AX)+ Z

Phase transition at

Stat. dim. of descent cone: m* = 4(D)




Sharp Phase Transitions with Gaussian Measurements

Descent cone D

2 03 04 05 06 07 08
Samnlina Rafin &= m /n

n = 400

[ High dimensions (large n): sharp line between success and failure! ]

Beautiful math: convex polytopes, conic geometry, high-D probability.



Noise and Inexact Structure

Observation: y = Ax, + z, with x, structured, and z noise.

Goal: produce Z as close to x, as possible! Relax:

® Lasso for stable sparse recovery
o 1l Ax — 2 +
min 3| Az —ylf3 + pflz(
® Matrix Lasso for stable low-rank recovery

min 5[ A[X] = yI3 + pl X

Wealth of statistical results: if A “nice” (say, RIP or RSC) ...
(i) Deterministic noise: | — x| < C||z||2

(i) Stochastic noise: ||z — x| < Coy/klogn/m.

(iii) Inexact structure: || — x,|| < C||@o — [0k |-



Parallelism between Rank and Sparsity

Sparse Vector

Low-rank Matrix

Low-dimensionality of

individual signal x

a set of signals X

Compressive sensing

y=Ax

Y = A(X)

Low-dim measure

29 norm ||zl

rank(X)

Convex surrogate

2t norm ||z||;

nuclear norm || X ||.

Success conditions (RIP)

Sor(A) > V2 -1

547‘(A) > \@_ 1

Random measurements

m = O(klog(n/k))

m = O(nr)

Stable/Inexact recovery

y=Ax+z

Y = AX)+ Z

Phase transition at

Stat. dim. of descent cone: m* = 4(D)




Combining Rank and Sparsity: Robust PCA?

Observation Y Low-rank Matrix L, Sparse Error S,

Given Y = L, + S,, with L, low-rank, S, sparse, recover (L,, S,).

A robust counterpart to classical principal component analysis:

Classical PCA: Low-rank + small noise
Matrix Completion: Low-rank from a subset of entries
Low-rank and Sparse: Low-rank + gross errors



Low-rank + Sparse |: Video

A sequence of video frames can be modeled as a static background
(low-rank) and moving foreground (sparse).

i b
AT

(a) Original frames (b) Low-rank L (c) Sparse §



Low-rank + Sparse Il: Faces

A set of face images of the same person under different lightings can be

modeled as a low-dimensional, 3 ~ 9d, subspace and sparse occlusions and
corruptions (specularities).




Low-rank + Sparse Ill: Communities

Finding communities in a large social networks. Each community can be
modeled as a clique of the social graph G, hence a rank-1 block in the

connectivity matrix M. Hence M is a low-rank matrix and some sparse
connections across communities.




Low-rank + Sparse: Convex Relaxations

Optimization formulation:
minimize rank(L) + A||S]lo subjectto L+ S =Y,
which is intractable. Consider convex relaxation:

[Sllo = 1ISllx, rank(L) = [lo(L)llo = [ L]

minimize ||L||« + A||S||1 subjectto L+ S=Y.

® Theory: recovery, e.g., when L, incoherent, S, random sparse.

e Efficient, scalable methods: see Lecture 2 this afternoon!



General Low-Dimensional Models

Atomic Norms and Structured Sparsity

Atomic Norm: for a set of atoms D, ||z||¢ =inf{) , ¢; | >, c;id; = x}
® Sparsity: D = {e;},

Low-rank: D = {uv’},

Column sparse matrices: D = {ue;f},

Sinusoids: D = {exp(i(27ft +&))},

Tensors: D = {u; @ ua @un}, ...

Structured Sparsity: capture relationship between nonzeros




Learned Low-Dimensional Models:
Dictionary Learning, Deconvolution

EEN

Dictionary A

min  f(A,X)=3|Y - AX|% + | X1, st.A€O0,

%107

500 1000 1500 2000
Iteration

The same modeling toolkit, but optimization formulations become
nonconvex! (see Lecture 3)




Nonlinear Low-Dimensional Models

Nonlinear Observations: Transformed low-rank texture

s
3 @ "

ey T PR
(a) Low-rank texture I, (b) Tts image I under a different,
viewpoint

Nonlinear (Manifold) Structure: Gravitational wave astronomy

Nonconvex optimization + deep networks as tools for Lineariz-
ing Nonlinear Low-d Structure! (see Lectures 4-5)




Conclusion and Coming Attractions

Models: Sparse and Low-rank provide a flexible toolkit for modeling
high-dimensional signals

Sample Complexity: Structured signals can be recovered from
near-minimal measurements m ~ #dof(x).

Tractable Computation: Convex relaxations ¢!, nuclear norm

e Extensions: Combinations, learned dictionaries, nonlinear structures.

Next lecture: efficient & scalable convex methods for recover-
ing structured signals.

Thank You! Questions?
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