ICASSP 2022 Short Course

Low-Dimensional Models for High-Dimensional Data Linear to Nonlinear, Convex to Nonconvex

Lecture 1: Introduction to Low-Dimensional Models

Sam Buchanan, Yi Ma, Qing Qu John Wright, Yuqian Zhang, Zhihui Zhu

May 24, 2022

The Signal Processing Pipeline

Sensing，Compression
\downarrow
Denoising，Deblurring，Superresolution
\downarrow
Source Separation，Error Correction
\downarrow
Inference，Prediction

The pursuit of low－dimensional structure is a universal task！

Historical Context: Quest for Low-Dimensionality

Fourier
Wavelets
X-lets: Curvelets, Contourlets, Bandelets, ...
Learned Dictionaries
Learned Reconstruction Procedures

A continuing quest for sparse signal representations leveraging mathematics + massive data and computation!

Historical Context: Sparsity in Neuroscience

Dogma for natural vision [Barlow 1972]: "... to represent the input as completely as possible by activity in as few neurons as possible."

Find sparse $\left\{x_{i}\right\}$ such that

$$
\begin{equation*}
\boldsymbol{y}=\sum_{i=1}^{n} x_{i} \boldsymbol{a}_{i}+\boldsymbol{\epsilon} \quad \in \mathbb{R}^{m}, \tag{1}
\end{equation*}
$$

[Nature, Olshausen and Field 1996.]

Historical Context: Sparse and Low-d in Statistics

Principal Component Analysis

Linear correlations in data (low-rank model!)
Data space $\mathbb{R}^{n_{1}}$

[Pearson 1901], [Hotelling 1933], [Eckart and Young 1936]

Best Subset Selection

Select a few relevant predictors (sparse model!)
[Hocking, Leslie, and Beale 1967], Stagewise pursuit [Efroymson 1966],
Lasso [Tibshirani 1996], Basis pursuit [Chen, Donoho, and Saunders 1998]

Historical Context: Estimation, Errors, Missing Data

A long and rich history of robust estimation with error correction and missing data imputation:
R. J. Boscovich. De calculo probailitatum que respondent diversis valoribus summe errorum post plures observationes ... , before 1756
A. Legendre. Nouvelles methodes pour la determination des orbites des cometes, 1806

over-determined + dense, Gaussian
C. Gauss. Theory of motion of heavenly bodies, 1809
A. Beurling. Sur les integrales de Fourier absolument convergentes et leur application a une transformation functionelle, 1938
B. Logan. Properties of High-Pass Signals, 1965

underdetermined

+ sparse, Laplacian

The Modern Era: Massive Data and Computation

Motivating Issues I: Correctness?

How can we correctly compute with low-dimensional structure?

Sparse Vectors

Low-rank Matrices

Nonlinear Manifolds

Low-d. structure leads to principled answers and practical methods!

Motivating Issues II: Computational Efficiency?

Computational Tractability: easy vs./ hard problems:

Convexity

Benign Nonconvexity

Efficient, scalable methods leveraging problem geometry:

gradient descent

Motivating Issues III: Resource Efficiency?

Data Efficiency: How many samples? How many labels? Architecture Efficiency: How deep? How wide? What operations?

Low-d. structure of data sets fundamental resource requirements for sensing and learning.

Motivating Issues IV－Robustness？

Robustness：to errors，outliers，missing data：

$$
\left[\begin{array}{cccc}
5 & 3 & \ldots & ? \\
? & 2 & \ldots & 4 \\
\vdots & \vdots & \ddots & \vdots \\
5 & ? & \ldots & ?
\end{array}\right]
$$

Robustness and deep networks？

＂panda＂
57.7% confidence
$+.007 \times$

＂nematode＂ 8.2% confidence

＂gibbon＂
99.3 \％confidence

From［Goodfellow，Shlens and Szegedy，2015］

Low－d structure of signal and error can lead to principled ap－ proaches to robustness．

Motivating Issues V: Invariance?

Transformations of the signal domain:

can cause still lead to disturbing failures:

From [Azulay and Weiss, 2019]

Low-d. structure in texture / appearance and transformation!

This Tutorial: The Plan

- Lecture 1: Introduction to Low-D Models
- Lecture 2: Convex Optimization for Low-D Models
- Lecture 3: Nonconvex Optimization and Low-D Models
- Lecture 4: Learning Deep Networks for Low-D Structure
- Lecture 5: Designing Deep Networks for Low-D Structure

This Tutorial: Resources

High-Dimensional Data Analysis with Low-Dimensional Models
Principles, Computation, and Applications

John Wright and Yi Ma
Cambridge University Press, 2022.

Preproduction Copy from Website: https://book-wright-ma.github.io Slides, Code, etc: https://book-wright-ma.github.io/Lecture-Slides/

This Tutorial：The Plan

－Lecture 1：Introduction to Low－D Models
－Lecture 2：Convex Optimization for Low－D Models
－Lecture 3：Nonconvex Optimization and Low－D Models
－Lecture 4：Learning Deep Networks for Low－D Structure
－Lecture 5：Designing Deep Networks for Low－D Structure

Sparse Signal Models

Sparse Signals: Call $\boldsymbol{x}_{o} \in \mathbb{R}^{n}$ sparse if it has only a few nonzero entries:

Sparse Recovery: Given linear measurements $\boldsymbol{y} \in \mathbb{R}^{m}$ of a sparse signal \boldsymbol{x}_{o} :

recover \boldsymbol{x}_{o}.

Sparsity I: Neural Spikes

Sparse and low-dimensional models arise naturally from physical structure of data!

Sparsity I: Neural Spikes and Beyond

Defect Pattern
TEM Image NaFeAs

Blurred Image

Camera Motion Blur

Common Convolutional Model: $\boldsymbol{y}=\boldsymbol{a} * \boldsymbol{x}+\boldsymbol{z}$, with \boldsymbol{x} sparse.

Sparsity II: Faces and Error Correction

Two types of structure: sparsity of identity and sparsity of errors.

Sparsity II: Faces and Error Correction

Two types of structure: sparsity of identity and sparsity of errors.

Concatenate gallery images of n subjects into a large "dictionary":

$$
\boldsymbol{B}=\underset{\text { all training images }}{\left[\boldsymbol{B}_{1}\left|\boldsymbol{B}_{2}\right| \cdots \mid \boldsymbol{B}_{n}\right]} \in \mathbb{R}^{m \times n}
$$

Sparsity II: Faces and Error Correction

Find sparse solutions $(\boldsymbol{x}, \boldsymbol{e})$ to the linear system:

$$
\boldsymbol{y}=\boldsymbol{B} \boldsymbol{x}+\boldsymbol{e}=[\boldsymbol{B}, \boldsymbol{I}]\left[\begin{array}{l}
\boldsymbol{x} \\
\boldsymbol{e}
\end{array}\right] .
$$

Correcting Gross Errors is also a sparse recovery problem!

Sparsity III: Magnetic Resonance Imaging

Figure: Left: Key components. Right: The three-axis gradient coils.

Sparsity III: Magnetic Resonance Imaging

Simplified mathematical model for MRI:

$$
\begin{aligned}
& y=\mathcal{F}[I](\boldsymbol{u})=\int_{\boldsymbol{v}} I(\boldsymbol{v}) \exp \left(-\mathfrak{i} 2 \pi \boldsymbol{u}^{*} \boldsymbol{v}\right) d \boldsymbol{v}, \quad \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{2} \\
& \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{F}[I]\left(\boldsymbol{u}_{1}\right) \\
\vdots \\
\mathcal{F}[I]\left(\boldsymbol{u}_{m}\right)
\end{array}\right] \doteq \mathcal{F}_{\mathbf{U}}[I], \quad m \ll N^{2} .
\end{aligned}
$$

Figure: Recovering MRI image from Fourier measurements.

Sparsity III: Structure of MR Images

Express I as a superposition of basis functions $\boldsymbol{\Psi}=\left\{\boldsymbol{\psi}_{1}, \ldots, \boldsymbol{\psi}_{N^{2}}\right\}$:

$$
\underset{\text { image }}{I}=\sum_{i=1}^{N^{2}} \underset{i \text {-th basis signal }}{\boldsymbol{\psi}_{i}} \times \underset{i \text {-th coefficient }}{x_{i} .}
$$

image $I(v)$

wavelet coefficients $x: I=\Psi[x]$.

Many natural signals become sparse or compressible in an appropriately designed transform domain!

Sparsity III: Image Reconstruction by Sparse Recovery

$$
\begin{align*}
&= \mathcal{F}_{\mathrm{U}}[I], \\
&= \mathcal{F}_{\mathrm{U}}\left[\boldsymbol{\psi}_{1} x_{1}+\cdots+\boldsymbol{\psi}_{N^{2}} x_{N^{2}}\right], \\
&= \mathcal{F}_{\mathrm{U}}\left[\boldsymbol{\psi}_{1}\right] x_{1}+\cdots+\mathcal{F}_{\mathrm{U}}\left[\boldsymbol{\psi}_{N^{2}}\right] x_{N^{2}}, \\
&= {\left[\mathcal{F}_{\mathrm{U}}\left[\boldsymbol{\psi}_{1}\right]|\cdots| \mathcal{F}_{\mathrm{U}}\left[\boldsymbol{\psi}_{N^{2}}\right]\right] \boldsymbol{x}, } \\
& \text { matrix } \boldsymbol{A} \in \mathbb{R}^{m \times N^{2}}, m \ll N^{2} . \\
&=\boldsymbol{A x} . \tag{2}
\end{align*}
$$

x is sparse or approximately sparse!
Compressed sensing: the number of measurements m for accurate reconstruction should be dictated by signal complexity

Sparsity IV: Image Patches

Denoising given $I_{\text {noisy }}=I_{\text {clean }}+\boldsymbol{z} \ldots$ break into patches $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{p}$:

$$
\boldsymbol{y}_{i}=\boldsymbol{y}_{i \text { clean }}+\boldsymbol{z}_{i}=\underset{\text { patch dictionary }}{\boldsymbol{A}} \times \underset{\text { sparse coefficient vector }}{\boldsymbol{x}_{i}}+\boldsymbol{z}_{i} .
$$

Figure: Left: noisy input; middle: denoised; right: learned patch dictionary.

Natural signals are challenging to model analytically \Longrightarrow can learn the sparse model from data!

Measuring Sparsity: ℓ^{0} Norm

Def: the ℓ^{0} "norm" $\|x\|_{0}$ is the number of nonzero entries in the vector $\boldsymbol{x}:\|\boldsymbol{x}\|_{0}=\#\{i \mid \boldsymbol{x}(i) \neq 0\}$.

Connection to ℓ^{p} norms

$$
\begin{aligned}
& \|\boldsymbol{x}\|_{p}=\left(\sum_{i}\left|\boldsymbol{x}_{i}\right|^{p}\right)^{1 / p}: \\
& \|\boldsymbol{x}\|_{0}=\lim _{p \searrow}\|\boldsymbol{x}\|_{p}^{p}
\end{aligned}
$$

The ℓ^{p} balls.

Sparse Recovery：ℓ^{0} minimization

Computational Principle：seek the sparsest signal consistent with our observations：

$$
\hat{\boldsymbol{x}}=\arg \min \|\boldsymbol{x}\|_{0} \quad \text { s.t. } \quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

Brute force exhaustive search：try all possible sets of nonzero entries

$$
\boldsymbol{A}_{\mid} \boldsymbol{x}_{\mathrm{I}}=\boldsymbol{y} ? \quad \forall \mathrm{I} \subseteq\{1, \ldots, n\},|\mathrm{I}| \leq k
$$

Sparse Recovery: ℓ^{0} minimization

Computational Principle: seek the sparsest signal consistent with our observations:

$$
\hat{\boldsymbol{x}}=\arg \min \|\boldsymbol{x}\|_{0} \quad \text { s.t. } \quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

Brute force exhaustive search: try all possible sets of nonzero entries

$$
\boldsymbol{A}_{\mid} \boldsymbol{x}_{\mathrm{I}}=\boldsymbol{y} ? \quad \forall \mathrm{I} \subseteq\{1, \ldots, n\},|\mathrm{I}| \leq k
$$

Theory: ℓ^{0} recovers any sufficiently sparse signal! For generic \boldsymbol{A}, success when $\left\|\boldsymbol{x}_{o}\right\|_{0} \leq \frac{m}{2}$.

ℓ^{0} Minimization is NP－hard

Theorem（Hardness of ℓ^{0} Minimization）

The ℓ^{0}－minimization problem $\min \|\boldsymbol{x}\|_{0}$ s．t． $\boldsymbol{A x}=\boldsymbol{y}$ is（strongly）NP－hard．
Proof：Reducible from Exact 3－Set Cover（E3C）problem．

ℓ^{0} Minimization is NP-hard

Theorem (Hardness of ℓ^{0} Minimization)

The ℓ^{0}-minimization problem $\min \|\boldsymbol{x}\|_{0}$ s.t. $\boldsymbol{A x}=\boldsymbol{y}$ is (strongly) NP-hard.
Proof: Reducible from Exact 3-Set Cover (E3C) problem.

In high dimensions, need to pay attention to both statistical and computational efficiency!

Convex Relaxation: ℓ^{1} Minimization

Intuitive reasons why ℓ^{0} minimization:

$$
\begin{equation*}
\min \|\boldsymbol{x}\|_{0} \quad \text { subject to } \quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \tag{3}
\end{equation*}
$$

is very challenging:

ℓ^{0} is nonconvex, discontinuous, not amenable to local search methods such as gradient descent.

Convex Relaxation: ℓ^{1} Minimization

For minimizing a generic function: $\min f(\boldsymbol{x}), \boldsymbol{x} \in \mathrm{C}$ (a convex set), local methods: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-t \nabla f\left(\boldsymbol{x}_{k}\right)$ succeed only if f has "nice" geometry:

nonconvex

Need to formulate for computational efficiency!

- Lectures 1-2: convex relaxations for sparse, low-rank models
- Lectures 3-5: benign nonconvex formulations for nonlinear models

Convex Relaxation：ℓ^{1} Minimization

Figure：Convex surrogates for the ℓ^{0} norm．$\|\boldsymbol{x}\|_{1}$ is the convex envelope of $\|x\|_{0}$ on B_{∞} ．

Efficient convex relaxation：

$$
\min \|\boldsymbol{x}\|_{1} \quad \text { subject to } \quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}
$$

Solvable quickly at large scale using dedicated methods（Lecture 2）．

Minimizing the ℓ^{1} Norm：Simulations

Solve：$\quad \min \|\boldsymbol{x}\|_{1} \quad$ s．t．$\quad \boldsymbol{A x}=\boldsymbol{y}$.
\boldsymbol{A} is of size 200×400 ．Fraction of success across 50 trials．

Experiment：ℓ^{1} minimization recovers any sufficiently sparse signal？

Geometric Intuition：Coefficient Space

Given $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{o} \in \mathbb{R}^{m}$ with $\boldsymbol{x}_{o} \in \mathbb{R}^{n}$ sparse：

$$
\begin{equation*}
\min \|\boldsymbol{x}\|_{1} \quad \text { subject to } \quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \tag{5}
\end{equation*}
$$

The space of all feasible solutions is an affine subspace：

$$
\begin{equation*}
\mathrm{S}=\{\boldsymbol{x} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}\}=\left\{\boldsymbol{x}_{o}\right\}+\operatorname{null}(\boldsymbol{A}) \quad \subset \mathbb{R}^{n} \tag{6}
\end{equation*}
$$

Coefficient space \mathbb{R}^{n}

ℓ^{1} ball
$\mathrm{B}_{1}=\left\{\boldsymbol{x} \mid\|\boldsymbol{x}\|_{1} \leq 1\right\}$

Geometric Intuition: Coefficient Space

Gradually expand a ℓ^{1} ball of radius t from the origin $\mathbf{0}$:

$$
\begin{equation*}
t \cdot \mathrm{~B}_{1}=\left\{\boldsymbol{x} \mid\|\boldsymbol{x}\|_{1} \leq t\right\} \quad \subset \mathbb{R}^{n}, \tag{7}
\end{equation*}
$$

till its boundary first touches the feasible set S :

Geometric Intuition: ℓ^{1} vs. ℓ^{2} ?

$$
\begin{array}{llll}
\text { A : } & \min \|\boldsymbol{x}\|_{1} & \text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \\
\text { B : } & \min \|\boldsymbol{x}\|_{2} & \text { subject to } & \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \tag{9}
\end{array}
$$

A L1 regularization

B \quad L2 regularization

ℓ^{1} picks out sparse signals, because the ℓ^{1} ball is pointy!

Theory: Isometry Principles

Say that \boldsymbol{A} satisfies the restricted isometry property of order k with coefficient δ if for all k-sparse \boldsymbol{x},

$$
(1-\delta)\|\boldsymbol{x}\|_{2}^{2} \leq\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \leq(1+\delta)\|\boldsymbol{x}\|_{2}^{2} .
$$

\mathbb{R}^{m}

Theorem (RIP $\Longrightarrow \ell^{1}$ succeeds)

Suppose that $\delta_{2 k}(\boldsymbol{A})<\sqrt{2}-1$. Then ℓ^{1} minimization recovers any k-sparse signal \boldsymbol{x} !

Theory: Random Sensing

Theorem (RIP of Gaussian Matrices)

If $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ with entries independent $\mathcal{N}\left(0, \frac{1}{m}\right)$ random variables, with high probability, $\delta_{k}(\boldsymbol{A})<\delta$, provided $m \geq C k \log (n / k) / \delta^{2}$.

$\Longrightarrow \quad \ell^{1}$-minimization recovers k-sparse vectors from about $k \log (n / k)$ measurements (nearly minimal)!

Extensions: other distributions, structured random matrices.

From Sparse Recovery to Low－Rank Recovery

Recovering a sparse signal x_{o} ：

$$
\underset{\text { observation }}{\boldsymbol{y}}=\boldsymbol{A} \underset{\substack{\text { unknown }}}{\boldsymbol{x}_{o}}
$$

where $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ is a linear map．
Recovering a low－rank matrix X_{o} ：

$$
\underset{\text { observation }}{\boldsymbol{y}}=\mathcal{A}\left[\underset{\underset{\text { unknown }}{\boldsymbol{X}_{o}}}{ }\right]
$$

where $\mathcal{A}: \mathbb{R}^{n_{1} \times n_{2}} \rightarrow \mathbb{R}^{m}$ is a linear map．

Low-Rank I: Rank and Geometry

Multiple images of a Lambertian object with varying light:

$$
\boldsymbol{Y}=\mathcal{P}_{\Omega}[\boldsymbol{N} \boldsymbol{L}], \boldsymbol{X}=\boldsymbol{N} \boldsymbol{L} \text { has rank } 3
$$

Low-rank model from physical constraints (3 degrees of freedom in point illumination)

See also: multiview geometry, system identification, sensor positioning...

Low-Rank II: Rank and Collaborative Filtering

Items
We observe: Observed (Incomplete) Ratings Y

$$
\underset{\text { Observed ratings }}{\boldsymbol{Y}}=\mathcal{P}_{\Omega}[\underset{\text { Complete ratings }}{\boldsymbol{X}}]
$$

where $\Omega \doteq\{(i, j) \mid$ user i has rated product $j\}$.
Low-rank model: user preferences are linearly correlated; a few factors predict preferences $\left(\boldsymbol{Y}_{i j}=\boldsymbol{u}_{i}^{T} \boldsymbol{v}_{j}\right.$, with $\left.\boldsymbol{u}_{i}, \boldsymbol{v}_{j} \in \mathbb{R}^{r}\right)$.

See also: latent semantic analysis, topic modeling...

Rank and Singular Value Decomposition

Theorem (Compact SVD)

Let $\boldsymbol{X} \in \mathbb{R}^{n_{1} \times n_{2}}$ be a matrix, and $r=\operatorname{rank}(\boldsymbol{X})$. Then there exist $\boldsymbol{\Sigma}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$ with numbers $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ and matrices
$\boldsymbol{U} \in \mathbb{R}^{n_{1} \times r}, \boldsymbol{V} \in \mathbb{R}^{n_{2} \times r}$, such that $\boldsymbol{U}^{*} \boldsymbol{U}=\boldsymbol{I}, \boldsymbol{V}^{*} \boldsymbol{V}=\boldsymbol{I}$ and

$$
\boldsymbol{X}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{*}=\sum_{i=1}^{r} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{*}
$$

Low-rank is sparsity of the singular values: $\operatorname{rank}(\boldsymbol{X})=\|\boldsymbol{\sigma}(\boldsymbol{X})\|_{0}$!

Many of the same tools and ideas apply!
Computing SVD: Nice Nonconvex Problem (Lecture 3)

Affine Rank Minimization

Problem: recover a low-rank matrix \boldsymbol{X}_{o} from linear measurements:

$$
\min \operatorname{rank}(\boldsymbol{X}) \quad \text { subject to } \mathcal{A}[\boldsymbol{X}]=\boldsymbol{y}
$$

where $\boldsymbol{y} \in \mathbb{R}^{m}$ is an observation and $\mathcal{A}: \mathbb{R}^{n_{1} \times n_{2}} \rightarrow \mathbb{R}^{m}$ is linear.

General linear map: $\mathcal{A}[\boldsymbol{X}]=\left(\left\langle\boldsymbol{A}_{1}, \boldsymbol{X}\right\rangle, \ldots,\left\langle\boldsymbol{A}_{m}, \boldsymbol{X}\right\rangle\right), \boldsymbol{A}_{i} \in \mathbb{R}^{n_{1} \times n_{2}}$.
NP-Hard in general, by reduction from ℓ^{0} minimization, using that

$$
\operatorname{rank}(\boldsymbol{X})=\|\boldsymbol{\sigma}(\boldsymbol{X})\|_{0}
$$

Let's seek a tractable surrogate...

Convex Relaxation: Nuclear Norm Minimization

Replace the rank, which is the ℓ^{0} norm $\boldsymbol{\sigma}(\boldsymbol{X})$ with the ℓ^{1} norm of $\boldsymbol{\sigma}(\boldsymbol{X})$:

$$
\text { Nuclear norm: } \quad\|\boldsymbol{X}\|_{*} \doteq\|\boldsymbol{\sigma}(\boldsymbol{X})\|_{1}=\sum_{i} \sigma_{i}(\boldsymbol{X}) .
$$

Also known as the trace norm, Schatten 1-norm, and Ky-Fan k-norm.

Nuclear norm minimization problem:

$$
\min \|\boldsymbol{X}\|_{*} \quad \text { subject to } \quad \mathcal{A}[\boldsymbol{X}]=\boldsymbol{y}
$$

Geometry of nuclear norm minimization:
Nuclear norm ball $B_{*}=\left\{\boldsymbol{X} \mid\|\boldsymbol{X}\|_{*} \leq 1\right\}$

Low-Rank Recovery with Generic Measurements

- Rank Restricted Isometry Property: for all rank-r \boldsymbol{X},

$$
(1-\delta)\|\boldsymbol{X}\|_{F} \leq\|\mathcal{A}[\boldsymbol{X}]\| \leq(1+\delta)\|\boldsymbol{X}\|_{F}
$$

- Rank RIP \Longrightarrow accurate recovery: if $\delta_{4 r}(\mathcal{A}) \leq \sqrt{2}-1$, nuclear norm minimziation recovers any rank- $r \boldsymbol{X}_{o}$.
- Random linear maps have rank-RIP if

$$
\mathcal{A}[\boldsymbol{X}]=\left(\left\langle\boldsymbol{A}_{1}, \boldsymbol{X}\right\rangle, \ldots,\left\langle\boldsymbol{A}_{m}, \boldsymbol{X}\right\rangle\right)
$$

with $\boldsymbol{A}_{1}, \ldots, \boldsymbol{A}_{m}$ independent Gaussian matrices, \mathcal{A} has rank-RIP with high probability when $m \geq C\left(n_{1}+n_{2}\right) r / \delta^{2}$.

Nuclear norm minimization recovers low-rank matrices from near minimal number $m \sim r\left(n_{1}+n_{2}-r\right)$ of generic measurements.

Generic vs. Structured Measurements

$$
\begin{array}{cc}
y_{i}=\left\langle[\square], \boldsymbol{X}_{o}\right\rangle & y_{i}=\left\langle[\square], \boldsymbol{X}_{o}\right\rangle \\
\boldsymbol{A}_{i} \text { random } & \boldsymbol{A}_{i}=E_{u_{i}, v_{i}} \\
\text { Matrix Sensing } & \text { Matrix Completion }
\end{array}\left[\begin{array}{cccc}
5 & 3 & \ldots & ? \\
? & 2 & \ldots & 4 \\
\vdots & \vdots & \ddots & \vdots \\
5 & ? & \ldots & ?
\end{array}\right]
$$

Rank-RIP: no low-rank \boldsymbol{X} in $\operatorname{null}(\mathcal{A})$.
Matrix completion: $\exists \operatorname{rank}-1 \boldsymbol{X}$ in $\operatorname{null}(\mathcal{A})$. E.g., $\boldsymbol{X}=\boldsymbol{E}_{i j},(i, j) \notin \Omega$.
\Longrightarrow Matrix completion does not have restricted isometry property!

Analogous instances: superresolution of point sources, sparse spike deconvolution, analysis of dictionary learning methods.

Theory for Matrix Completion

Theorem

With high probability, nuclear norm minimization recovers an $n \times n$, ν-incoherent, rank-r matrix from a random subset of entries, of size

$$
m \geq C n r \nu \log ^{2} n
$$

Restrict to incoherent \boldsymbol{X}_{o} (not concentrated on a few entries!)
Proof ideas: local isometry plus clever use of convexity and probability.

$$
\mathrm{M}_{r}=\{\boldsymbol{X} \mid \operatorname{rank}(\boldsymbol{X})=r\}
$$

Parallelism between Rank and Sparsity

	Sparse Vector	Low-rank Matrix				
Low-dimensionality of	individual signal \boldsymbol{x}	a set of signals \boldsymbol{X}				
Compressive sensing	$\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$	$\boldsymbol{Y}=\mathcal{A}(\boldsymbol{X})$				
Low-dim measure	ℓ^{0} norm $\\|\boldsymbol{x}\\|_{0}$	$\operatorname{rank}(\boldsymbol{X})$				
Convex surrogate	ℓ^{1} norm $\\|\boldsymbol{x}\\|_{1}$	nuclear norm $\\|\boldsymbol{X}\\|_{*}$				
Success conditions (RIP)	$\delta_{2 k}(\boldsymbol{A}) \geq \sqrt{2}-1$	$\delta_{4 r}(\boldsymbol{A}) \geq \sqrt{2}-1$				
Random measurements	$m=O(k \log (n / k))$	$m=O(n r)$				
Stable/Inexact recovery	$\boldsymbol{y}=\boldsymbol{A x}+\boldsymbol{z}$	$\boldsymbol{Y}=\mathcal{A}(\boldsymbol{X})+\boldsymbol{Z}$				
Phase transition at	Stat. dim. of descent cone: $m^{*}=\delta(\mathrm{D})$					

Sharp Phase Transitions with Gaussian Measurements

$n=50$
$n=100$

High dimensions (large n): sharp line between success and failure!

Beautiful math: convex polytopes, conic geometry, high-D probability.

Noise and Inexact Structure

Observation: $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{o}+\boldsymbol{z}$, with \boldsymbol{x}_{o} structured, and \boldsymbol{z} noise.
Goal: produce $\widehat{\boldsymbol{x}}$ as close to \boldsymbol{x}_{o} as possible! Relax:

- Lasso for stable sparse recovery

$$
\min _{\boldsymbol{x}} \frac{1}{2}\|\boldsymbol{A} \boldsymbol{x}-\boldsymbol{y}\|_{2}^{2}+\mu\|\boldsymbol{x}\|_{1}
$$

- Matrix Lasso for stable low-rank recovery

$$
\min _{\boldsymbol{X}} \frac{1}{2}\|\mathcal{A}[\boldsymbol{X}]-\boldsymbol{y}\|_{2}^{2}+\mu\|\boldsymbol{X}\|_{* \cdot}
$$

Wealth of statistical results: if \boldsymbol{A} "nice" (say, RIP or RSC) ...
(i) Deterministic noise: $\left\|\widehat{\boldsymbol{x}}-\boldsymbol{x}_{o}\right\| \leq C\|\boldsymbol{z}\|_{2}$
(ii) Stochastic noise: $\left\|\widehat{\boldsymbol{x}}-\boldsymbol{x}_{o}\right\| \leq C \sigma \sqrt{k \log n / m}$.
(iii) Inexact structure: $\left\|\widehat{\boldsymbol{x}}-\boldsymbol{x}_{o}\right\| \leq C\left\|\boldsymbol{x}_{o}-\left[\boldsymbol{x}_{o}\right]_{k}\right\|$.

Parallelism between Rank and Sparsity

	Sparse Vector	Low-rank Matrix				
Low-dimensionality of	individual signal \boldsymbol{x}	a set of signals \boldsymbol{X}				
Compressive sensing	$\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$	$\boldsymbol{Y}=\mathcal{A}(\boldsymbol{X})$				
Low-dim measure	ℓ^{0} norm $\\|\boldsymbol{x}\\|_{0}$	$\operatorname{rank}(\boldsymbol{X})$				
Convex surrogate	ℓ^{1} norm $\\|\boldsymbol{x}\\|_{1}$	nuclear norm $\\|\boldsymbol{X}\\|_{*}$				
Success conditions (RIP)	$\delta_{2 k}(\boldsymbol{A}) \geq \sqrt{2}-1$	$\delta_{4 r}(\boldsymbol{A}) \geq \sqrt{2}-1$				
Random measurements	$m=O(k \log (n / k))$	$m=O(n r)$				
Stable/Inexact recovery	$\boldsymbol{y}=\boldsymbol{A x}+\boldsymbol{z}$	$\boldsymbol{Y}=\mathcal{A}(\boldsymbol{X})+\boldsymbol{Z}$				
Phase transition at	Stat. dim. of descent cone: $m^{*}=\delta(\mathrm{D})$					

Combining Rank and Sparsity: Robust PCA?

Observation \boldsymbol{Y}

Low-rank Matrix \boldsymbol{L}_{o}

Sparse Error \boldsymbol{S}_{o}

Given $\boldsymbol{Y}=\boldsymbol{L}_{o}+\boldsymbol{S}_{o}$, with \boldsymbol{L}_{o} low-rank, \boldsymbol{S}_{o} sparse, recover $\left(\boldsymbol{L}_{o}, \boldsymbol{S}_{o}\right)$.

A robust counterpart to classical principal component analysis:
Classical PCA: Low-rank + small noise
Matrix Completion: Low-rank from a subset of entries
Low-rank and Sparse: Low-rank + gross errors

Low－rank＋Sparse I：Video

A sequence of video frames can be modeled as a static background （low－rank）and moving foreground（sparse）．

（a）Original frames

（b）Low－rank $\hat{\boldsymbol{L}}$

（c）Sparse $\hat{\boldsymbol{S}}$

Low-rank + Sparse II: Faces

A set of face images of the same person under different lightings can be modeled as a low-dimensional, $3 \sim 9 \mathrm{~d}$, subspace and sparse occlusions and corruptions (specularities).

Low-rank + Sparse III: Communities

Finding communities in a large social networks. Each community can be modeled as a clique of the social graph \mathcal{G}, hence a rank-1 block in the connectivity matrix \boldsymbol{M}. Hence \boldsymbol{M} is a low-rank matrix and some sparse connections across communities.

Low-rank + Sparse: Convex Relaxations

Optimization formulation:

$$
\text { minimize } \operatorname{rank}(\boldsymbol{L})+\lambda\|\boldsymbol{S}\|_{0} \quad \text { subject to } \quad \boldsymbol{L}+\boldsymbol{S}=\boldsymbol{Y}
$$

which is intractable. Consider convex relaxation:

$$
\|\boldsymbol{S}\|_{0} \rightarrow\|\boldsymbol{S}\|_{1}, \quad \operatorname{rank}(\boldsymbol{L})=\|\boldsymbol{\sigma}(\boldsymbol{L})\|_{0} \rightarrow\|\boldsymbol{L}\|_{*}
$$

$$
\text { minimize }\|\boldsymbol{L}\|_{*}+\lambda\|\boldsymbol{S}\|_{1} \quad \text { subject to } \quad \boldsymbol{L}+\boldsymbol{S}=\boldsymbol{Y}
$$

- Theory: recovery, e.g., when \boldsymbol{L}_{o} incoherent, \boldsymbol{S}_{o} random sparse.
- Efficient, scalable methods: see Lecture 2 this afternoon!

General Low-Dimensional Models

Atomic Norms and Structured Sparsity
Atomic Norm: for a set of atoms $\mathcal{D},\|\boldsymbol{x}\|_{\diamond}=\inf \left\{\sum_{i} c_{i} \mid \sum_{i} c_{i} \boldsymbol{d}_{i}=\boldsymbol{x}\right\}$

- Sparsity: $\mathcal{D}=\left\{\boldsymbol{e}_{i}\right\}$,
- Low-rank: $\mathcal{D}=\left\{\boldsymbol{u} \boldsymbol{v}^{T}\right\}$,
- Column sparse matrices: $\mathcal{D}=\left\{\boldsymbol{u} \boldsymbol{e}_{j}^{T}\right\}$,
- Sinusoids: $\mathcal{D}=\{\exp (\mathfrak{i}(2 \pi f t+\xi))\}$,
- Tensors: $\mathcal{D}=\left\{\boldsymbol{u}_{1} \otimes \boldsymbol{u}_{2} \otimes \boldsymbol{u}_{N}\right\}, \ldots$

Structured Sparsity: capture relationship between nonzeros

(d)

(e)

Learned Low-Dimensional Models:

Dictionary Learning, Deconvolution

The same modeling toolkit, but optimization formulations become nonconvex! (see Lecture 3)

Nonlinear Low-Dimensional Models

Nonlinear Observations: Transformed low-rank texture

Nonlinear (Manifold) Structure: Gravitational wave astronomy

Nonconvex optimization + deep networks as tools for Linearizing Nonlinear Low-d Structure! (see Lectures 4-5)

Conclusion and Coming Attractions

- Models: Sparse and Low-rank provide a flexible toolkit for modeling high-dimensional signals
- Sample Complexity: Structured signals can be recovered from near-minimal measurements $m \sim \# \operatorname{dof}(\boldsymbol{x})$.
- Tractable Computation: Convex relaxations ℓ^{1}, nuclear norm
- Extensions: Combinations, learned dictionaries, nonlinear structures.

Next lecture: efficient \& scalable convex methods for recovering structured signals.

Thank You! Questions?

