ICASSP 2023 Short Course

Learning Nonlinear and Deep Representations from High-Dimensional Data From Theory to Practice

Lecture 7: Deep Representation Learning from the Ground Up

Sam Buchanan, Yi Ma, Qing Qu, Atlas Wang John Wright, Yuqian Zhang, Zhihui Zhu

June 9, 2023

Recap: Sparse Recovery

Sparse approximation: structured signals, linear measurements

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x}_o, \quad oldsymbol{x}_o$$
 sparse, $oldsymbol{A} \in \mathbb{R}^{m imes n}$ random

with **convex** optimization

$$oldsymbol{x}_{\star} = rgmin_{oldsymbol{x}\in\mathbb{R}^n} \ rac{1}{2} \|oldsymbol{y}-oldsymbol{A}oldsymbol{x}\|_2^2 + \lambda \|oldsymbol{x}\|_1$$

and provable (high probability) guarantees

$$m{x}_{\star} = m{x}_{o}$$
 when measurements \gtrsim sparsity $imes \log\left(rac{ ext{measurements}}{ ext{sparsity}}
ight)$

2/74

The Deep Learning Era

What role does **low-dimensional structure** play in the **practice** of deep learning? (*understand, improve, design...*)

Sam Buchanan

Deep Representations from the Ground U

Focus of Today's Lecture: Representation Learning

Goal: seeking a low-dimensional representation Z in \mathbb{R}^d ($d \ll D$) for the data X on low-dimensional submanifolds such that:

$$oldsymbol{X} \subset \mathbb{R}^D \xrightarrow{f(oldsymbol{x},oldsymbol{ heta})} oldsymbol{Z} \subset \mathbb{R}^d \xrightarrow{g(oldsymbol{z},oldsymbol{\eta})} \hat{oldsymbol{X}} pprox oldsymbol{X} \in \mathbb{R}^D$$

Two subproblems: identification and representation.

Sam Buchanan

Deep Representations from the Ground U

June 9, 2023

4/74

Outline Recap and C

1 Motivating Vignettes for the Nonlinear Manifold Model

2 The Identification Problem: Binary Classification of Two Curves Problem Formulation Intrinsic Geometric Properties of Manifold Data Network Architecture Resources and Training Procedure Training Deep Networks with Gradient Descent Resource Tradeoffs

3 The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold Diffusion Models for Distribution Learning

CRATE: Identification/Representation of Low-D Structures at Scale White-Box Architectures for Representation Learning CRATE: White-Box Transformers from Sparse MCR² Experimental Results on CRATE

5 Conclusions and A Look Ahead

Low-Dimensional Structure in Deep Learning Problems

Appropriate mathematical model for data with low-dimensional structure in the deep learning era: **nonlinear manifolds**?

Vignette I: Large-Scale Image Classification

Task: Learn a deep network mapping images \rightarrow object classes from data.

ightarrow {hedgehog, hairbrush}

Massive driver of innovation in the last 10 years (ImageNet, ResNet, ViT...)

Nonlinear Variabilities in Natural Images

Australian

Terrier

Terrier

Bedlington

Terrier

Border

Terrier

Staffordshire Welsh **Bull Terrier** Terrier

Bull

Terrier

Miniature **Bull Terrier**

Cesky Terrier

Cairn

Terrier

Hairless Staffordshire Terrier Terrier

Glen of Terrier Imaal Terrier

nonlinear, geometric structure

6D for 3D rigid pose; 8D for perspective; 9D for certain illumination...

< □ > < □ > < □ > < □ > < □ > < □ >

Limitations of a Purely Data-Driven Approach?

Can fail to learn even simple invariances in the data:

From [Azulay and Weiss, 2019]

Vignette II: Deep Learning in Scientific Discovery Gravitational Wave Astronomy

One binary black hole merger:

Many mergers (varying mass M_1 , M_2): \implies low-dim manifold

Gravitational Wave Astronomy as Parametric Detection

s observation $x = s_{\gamma} + z$ or x = z: \implies two (noisy) manifolds!

Gravitational Wave Astronomy as Parametric Detection

Is observation $x = s_{\gamma} + z$ or x = z? \implies two (noisy) manifolds!

Classical approach: template matching $\max_{\gamma} \langle a_{\gamma}, x \rangle > \tau$?

Gravitational Wave Astronomy as Parametric Detection

< 円

 ρ_1

Is observation $oldsymbol{x} = oldsymbol{s}_{oldsymbol{\gamma}} + oldsymbol{z}$ or $oldsymbol{x} = oldsymbol{z}$?

 \implies two (noisy) manifolds!

Classical approach: template matching $\max_{\gamma} \langle a_{\gamma}, x \rangle > \tau$? Issues: Optimality? Complexity? Unknown unknowns? Unknown noise?

Ideally: Combine low-dim structure of Γ with data-driven for statistical structure...

Takeaways from the Examples

Two key takeaways:

- Data with **nonlinear**, **geometric structure** pervade successful practical applications of deep learning
- Important practical issues (robustness/invariance; resource efficiency; performance) naturally linked to low-dim structure

Takeaways from the Examples

Two key takeaways:

- Data with **nonlinear**, **geometric structure** pervade successful practical applications of deep learning
- Important practical issues (robustness/invariance; resource efficiency; performance) naturally linked to low-dim structure

Next: Understanding mathematically when and why deep learning successfully classifies data with nonlinear geometric structure.

Outline

Recap and Outlook

1 Motivating Vignettes for the Nonlinear Manifold Model

2 The Identification Problem: Binary Classification of Two Curves

Problem Formulation Intrinsic Geometric Properties of Manifold Data Network Architecture Resources and Training Procedure Training Deep Networks with Gradient Descent Resource Tradeoffs

3 The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold Diffusion Models for Distribution Learning

CRATE: Identification/Representation of Low-D Structures at Scale White-Box Architectures for Representation Learning CRATE: White-Box Transformers from Sparse MCR² Experimental Results on CRATE

5 Conclusions and A Look Ahead

A Mathematical Model Problem for Deep Learning + Low-Dimensional Structure

Formalizing data with nonlinear geometric structure: Low-dimensional Riemannian submanifolds of high-dimensional space!

The multiple manifold problem: *K*-way classification of data on *d*-dimensional Riemannian manifolds in \mathbb{S}^{n_0-1} .

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

The Two Manifold Problem

Problem. Given N i.i.d. labeled samples $(x_1, y(x_1)), \ldots, (x_N, y(x_N))$ from $\mathcal{M} = \mathcal{M}_+ \cup \mathcal{M}_-$, use gradient descent to train a deep network f_{θ} that perfectly labels the manifolds: sign $(f_{\theta}(x)) = y(x)$ for all $x \in \mathcal{M}$.

・ロト ・四ト ・ヨト ・ヨト

The Two Manifold Problem: Key Aspects

- Binary classification with a deep neural network
- High-dimensional data with (unknown!) low-dimensional structure
- Statistical structure, and asking for "strong" generalization

We will focus on the case of one-dimensional manifolds (curves)

What Can We Hope to Understand Here?

Our "barometer": compressed sensing.

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x}_o; \qquad oldsymbol{x}_{\star} = rgmin_{oldsymbol{x} \in \mathbb{R}^n} \ rac{1}{2} \|oldsymbol{y} - oldsymbol{A} oldsymbol{x}\|_2^2 + \lambda \|oldsymbol{x}\|_1$$

= $oldsymbol{x}_o$ when measurements \gtrsim sparsity $imes \log\left(rac{ ext{measurements}}{ ext{sparsity}}
ight)$

Questions:

 x_\star

What are our 'measurement resources' in the two manifold problem? What are intrinsic structural properties of nonlinear manifold data?

Sam Buchanan

Deep Representations from the Ground Up

The Two Manifold Problem: Geometric Parameters

Problem. Given N i.i.d. labeled samples $(\boldsymbol{x}_1, \boldsymbol{y}(\boldsymbol{x}_1)), \ldots, (\boldsymbol{x}_N, \boldsymbol{y}(\boldsymbol{x}_N))$ from $\mathcal{M} = \mathcal{M}_+ \cup \mathcal{M}_-$, use gradient descent to train a deep network $f_{\boldsymbol{\theta}}$ that perfectly labels the manifolds:

sign $(f_{\boldsymbol{\theta}}(\boldsymbol{x})) = y(\boldsymbol{x}) \quad \forall \, \boldsymbol{x} \in \mathcal{M}.$

A set of 'sufficient' intrinsic problem difficulty parameters:

- Curvature κ ;
- Separation Δ;
- Separation 'frequency' \\$.

< □ > < □ > < □ > < □ > < □ > < □ >

Intrinsic Structural Properties I: Separation

Intuitively: How close are the class manifolds?

Mathematically:

$$\Delta = \inf_{\boldsymbol{x}, \boldsymbol{x}' \in \mathcal{M}} \left\{ d_{\mathsf{extrinsic}}(\boldsymbol{x}, \boldsymbol{x}') \right\}$$

- < ∃ →

Intrinsic Structural Properties II: Curvature

Intuitively: Local deviation from *flatness* of the manifold.

Mathematically:

$$\kappa = \sup_{\boldsymbol{x} \in \mathcal{M}} \left\| \left(\boldsymbol{I} - \frac{\boldsymbol{x} \boldsymbol{x}^*}{\|\boldsymbol{x}\|_2^2} \right) \ddot{\boldsymbol{x}} \right\|_2$$

通 ト イヨ ト イヨト

Intrinsic Structural Properties III: 88-Number

Intuitively: How much do the class manifolds loop back on themselves?

Mathematically:

$$\mathfrak{B}(\mathcal{M}) = \sup_{\boldsymbol{x} \in \mathcal{M}} N_{\mathcal{M}} \left(\left\{ \boldsymbol{x}' \middle| \begin{array}{c} d_{\mathsf{intrinsic}}(\boldsymbol{x}, \boldsymbol{x}') > \tau_1 \\ d_{\mathsf{extrinsic}}(\boldsymbol{x}, \boldsymbol{x}') < \tau_2 \end{array} \right\}, \frac{1}{\sqrt{1 + \kappa^2}} \right)$$

Here, $N_{\mathcal{M}}(T, \delta)$ is the covering number of $T \subseteq \mathcal{M}$ by δ balls in $d_{\text{intrinsic}}$.

The Two Manifold Problem: Geometric Parameters

Problem. Given N i.i.d. labeled samples $(x_1, y(x_1)), \ldots, (x_N, y(x_N))$ from $\mathcal{M} = \mathcal{M}_+ \cup \mathcal{M}_-$, use gradient descent to train a deep network f_{θ} that perfectly labels the manifolds:

sign $(f_{\boldsymbol{\theta}}(\boldsymbol{x})) = y(\boldsymbol{x}) \quad \forall \, \boldsymbol{x} \in \mathcal{M}.$

A set of 'sufficient' intrinsic problem difficulty parameters:

- Curvature κ ;
- Separation Δ;
- Separation 'frequency' \\$.

< □ > < □ > < □ > < □ > < □ > < □ >

Network Architecture and Training Procedure

- Fully connected with ReLUs
- Gaussian initialization $oldsymbol{ heta}_0$
- Trained with N i.i.d. samples from measure μ of density ρ

Input $x \in \mathbb{S}^{n_0-1}$

Network Architecture and Training Procedure

- Fully connected with ReLUs
- Gaussian initialization $oldsymbol{ heta}_0$
- Trained with N i.i.d. samples from measure μ of density ρ

Output $f_{\theta}(x)$

Input $x \in \mathbb{S}^{n_0-1}$

Resource Tradeoffs: From Linear to Nonlinear

The "linear" case (compressed sensing):

$$oldsymbol{y} = oldsymbol{A} oldsymbol{x}_o; \qquad oldsymbol{x}_\star = rgmin_{oldsymbol{x} \in \mathbb{R}^n} \ rac{1}{2} \|oldsymbol{y} - oldsymbol{A} oldsymbol{x}\|_2^2 + \lambda \|oldsymbol{x}\|_1$$

 $oldsymbol{x}_\star = oldsymbol{x}_o$ when measurements $\gtrsim \ \mbol{sparsity} \ \mbol{sparsity} \log \left(rac{\mbol{measurements}}{\mbol{sparsity}}
ight)$

Our current nonlinear setting:

The Two Manifold Problem: Resource Tradeoffs

Theory question: How should we set resources (depth L, width n, samples N) relative to data structure (separation Δ , \mathfrak{B} ; curvature κ ; density ρ) so that gradient descent succeeds?

Output $f_{\theta}(x)$

Gradient Descent Training

Objective: Square Loss on Training Data

$$\min_{\boldsymbol{\theta}} \varphi(\boldsymbol{\theta}) \equiv \frac{1}{2} \int_{\mathcal{M}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}) \right)^2 d\mu_N(\boldsymbol{x}).$$

Does gradient descent correctly label the manifolds?

Gradient Descent Training

Objective: Square Loss on Training Data

$$\min_{\boldsymbol{\theta}} \varphi(\boldsymbol{\theta}) \equiv \frac{1}{2} \int_{\mathcal{M}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}) \right)^2 d\mu_N(\boldsymbol{x}).$$

Does gradient descent correctly label the manifolds? **One Approach**: Geometry (from symmetry!) in **parameter space**:

See [Gilboa, B., Wright '18], survey [Zhang, Qu, Wright 20] (Lecture 4!)

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Gradient Descent Training

Objective: Square Loss on Training Data

$$\min_{\boldsymbol{\theta}} \varphi(\boldsymbol{\theta}) \equiv \frac{1}{2} \int_{\mathcal{M}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}) \right)^2 d\mu_N(\boldsymbol{x}).$$

Does gradient descent correctly label the manifolds? Today's talk: Dynamics in input-output space:

Neural Tangent Kernel $\Theta(\boldsymbol{x}, \boldsymbol{x}') = \left\langle \frac{\partial f_{\theta}(\boldsymbol{x})}{\partial \theta}, \frac{\partial f_{\theta}(\boldsymbol{x}')}{\partial \theta} \right\rangle$ Measures ease of independently adjusting $f_{\theta}(\boldsymbol{x}), f_{\theta}(\boldsymbol{x}')$

Follows [Jacot et. al. 18], many recent works.

Sam Buchanan

Objective: Square Loss on Training Data

$$\min_{\boldsymbol{\theta}} \varphi(\boldsymbol{\theta}) \equiv \frac{1}{2} \int_{\mathcal{M}} \left(f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}) \right)^2 d\mu_N(\boldsymbol{x}).$$

Signed error: $\zeta(\boldsymbol{x}) = f_{\boldsymbol{\theta}}(\boldsymbol{x}) - y(\boldsymbol{x}).$ Gradient flow: $\dot{\boldsymbol{\theta}}_t = -\nabla_{\boldsymbol{\theta}}\varphi(\boldsymbol{\theta}_t) = -\int_{\mathcal{M}} \frac{\partial f_{\boldsymbol{\theta}}}{\partial \boldsymbol{\theta}} \big|_{\boldsymbol{\theta} = \boldsymbol{\theta}_t}(\boldsymbol{x})\zeta_t(\boldsymbol{x})d\mu_N(\boldsymbol{x}).$

The error evolves according to the NTK:

$$\dot{\zeta}_t(oldsymbol{x}) \;\;=\;\; \left. rac{\partial f_{oldsymbol{ heta}}(oldsymbol{x})}{\partial oldsymbol{ heta}}
ight|^*_{oldsymbol{ heta}=oldsymbol{ heta}_t} \dot{oldsymbol{ heta}}_t$$

→

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

The error evolves according to the NTK:

$$\begin{aligned} \dot{\zeta}_t(\boldsymbol{x}) &= \left. \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_t}^* \dot{\boldsymbol{\theta}}_t \\ &= \left. -\frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_t}^* \int_{\mathcal{M}} \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x}')}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_t} \zeta_t(\boldsymbol{x}') d\mu_N(\boldsymbol{x}') \end{aligned}$$

→

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

The error evolves according to the NTK:

$$\begin{aligned} \dot{\zeta}_{t}(\boldsymbol{x}) &= \left. \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}}^{*} \dot{\boldsymbol{\theta}}_{t} \\ &= \left. -\frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}}^{*} \int_{\mathcal{M}} \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x}')}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}} \zeta_{t}(\boldsymbol{x}') d\mu_{N}(\boldsymbol{x}') \\ &= \left. -\int_{\mathcal{M}} \left\langle \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}}, \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x}')}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}} \right\rangle \zeta_{t}(\boldsymbol{x}') d\mu_{N}(\boldsymbol{x}') \end{aligned}$$

< A >

→ ∃ →
Dynamics of Gradient Descent

The error evolves according to the NTK:

$$\begin{aligned} \dot{\zeta}_{t}(\boldsymbol{x}) &= \left. \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}}^{*} \dot{\boldsymbol{\theta}}_{t} \\ &= \left. -\frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}}^{*} \int_{\mathcal{M}} \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x}')}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}} \zeta_{t}(\boldsymbol{x}') d\mu_{N}(\boldsymbol{x}') \\ &= \left. -\int_{\mathcal{M}} \left\langle \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}}, \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x}')}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}} \right\rangle \zeta_{t}(\boldsymbol{x}') d\mu_{N}(\boldsymbol{x}') \end{aligned}$$

< A >

→ ∃ →

э

Dynamics of Gradient Descent

The error evolves according to the NTK:

$$\begin{aligned} \dot{\zeta}_{t}(\boldsymbol{x}) &= \left. \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}}^{*} \dot{\boldsymbol{\theta}}_{t} \\ &= \left. -\frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}}^{*} \int_{\mathcal{M}} \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x}')}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}} \zeta_{t}(\boldsymbol{x}') d\mu_{N}(\boldsymbol{x}') \\ &= \left. -\int_{\mathcal{M}} \left\langle \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x})}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}}, \frac{\partial f_{\boldsymbol{\theta}}(\boldsymbol{x}')}{\partial \boldsymbol{\theta}} \right|_{\boldsymbol{\theta}=\boldsymbol{\theta}_{t}} \right\rangle \zeta_{t}(\boldsymbol{x}') d\mu_{N}(\boldsymbol{x}') \\ &= \left. -\int_{\mathcal{M}} \Theta_{t}(\boldsymbol{x},\boldsymbol{x}') \zeta_{t}(\boldsymbol{x}') d\mu_{N}(\boldsymbol{x}') \right. \\ &= \left. -\Theta_{t}[\zeta_{t}](\boldsymbol{x}). \end{aligned}$$

< 1 k

< ∃ →

э

Dynamics of Gradient Descent ("NTK Regime")

When width and number of data samples are large, we have (whp)

$$\sup_{t} \left\| \boldsymbol{\Theta}_{t} - \boldsymbol{\Theta} \right\|_{L^{2} \to L^{2}} = o_{\mathsf{width}}(1)$$

throughout training.

 \implies LTI dynamics

$$\dot{\zeta}_t = -\boldsymbol{\Theta}[\zeta_t]$$

 \implies Fast decay if ζ_t is aligned with lead eigenvectors of Θ !

Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear \mathcal{M} , eigenvectors of Θ are intractable!

Definition. $g: \mathcal{M} \to \mathbb{R}$ is called a *certificate* if for all $x \in \mathcal{M}$ $f_{\theta_0}(x) - y(x) \underset{\text{square}}{\overset{\text{mean}}{\approx}} \int_{\mathcal{M}} \Theta(x, x') g(x') \, d\mu(x')$ and $\int_{\mathcal{M}} (g(x'))^2 \, d\mu(x')$ is small.

Implicit Error-NTK Alignment with Certificates Challenge: For nonlinear \mathcal{M} , eigenvectors of Θ are intractable!

Definition. $g: \mathcal{M} \to \mathbb{R}$ is called a *certificate* if for all $x \in \mathcal{M}$

$$f_{oldsymbol{ heta}_0}(oldsymbol{x}) - y(oldsymbol{x}) \stackrel{ ext{mean}}{pprox} \int_{\mathcal{M}} \Theta(oldsymbol{x},oldsymbol{x}') g(oldsymbol{x}') \, \mathrm{d} \mu(oldsymbol{x}')$$

and $\int_{\mathcal{M}} (g(\boldsymbol{x}'))^2 d\mu(\boldsymbol{x}')$ is small.

Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear \mathcal{M} , eigenvectors of Θ are intractable!

Definition. $g: \mathcal{M} \to \mathbb{R}$ is called a *certificate* if for all $x \in \mathcal{M}$

$$f_{\boldsymbol{ heta}_0}(\boldsymbol{x}) - y(\boldsymbol{x}) \overset{\text{mean}}{\underset{ ext{square}}{pprox}} \int_{\mathcal{M}} \Theta(\boldsymbol{x}, \boldsymbol{x}') g(\boldsymbol{x}') \, \mathrm{d} \mu(\boldsymbol{x}')$$

and $\int_{\mathcal{M}} (g(\boldsymbol{x}'))^2 d\mu(\boldsymbol{x}')$ is small.

Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear \mathcal{M} , eigenvectors of Θ are intractable!

Definition. $g: \mathcal{M} \to \mathbb{R}$ is called a *certificate* if for all $x \in \mathcal{M}$

$$f_{m{ heta}_0}(m{x}) - y(m{x}) \stackrel{\text{mean}}{\approx} \int_{\mathcal{M}} \Theta(m{x},m{x}') g(m{x}') \, \mathrm{d} \mu(m{x}')$$

and $\int_{\mathcal{M}} (g(\boldsymbol{x}'))^2 d\mu(\boldsymbol{x}')$ is small.

Lemma. (informal) If a certificate g exists for \mathcal{M} , then

$$\|\zeta_t\|_{L^2_{\mu}} \lesssim rac{L\log L}{t}.$$

- ロ ト ・ 同 ト ・ 三 ト ・ 三 ト - -

Roles of Width, Depth, and Data

$$\dot{\zeta}_t = -\boldsymbol{\Theta}[\zeta_t]$$

Questions: How do width, depth, and samples affect Θ ? How does Θ depend on the geometry of the data?

Width *n*: statistical resource

Key insights:

- 1 Θ decays with angle.
- 2 Faster decay as depth increases.
- $\implies {\sf Set depth based on} \\ geometry!$

 $\frac{1}{L}\Theta(\boldsymbol{e}_1, \boldsymbol{x}'), \ \boldsymbol{L} = \boldsymbol{5}$

Deeper networks fit more complicated geometries.

Sam Buchanan

Deep Representations from the Ground Up

June 9, 2023

Key insights:

- **1** Θ decays with angle.
- 2 Faster decay as depth increases.
- $\implies {\sf Set depth based on} \\ geometry!$

 $\frac{1}{L}\Theta(\boldsymbol{e}_1, \boldsymbol{x}')$, L=25

Deeper networks fit more complicated geometries.

Sam Buchanan

Deep Representations from the Ground Up

June 9, 2023

Key insights:

- **1** Θ decays with angle.
- 2 Faster decay as depth increases.
- \implies Set depth based on geometry!

 $\frac{1}{L}\Theta(\boldsymbol{e}_1, \boldsymbol{x}'), \ \boldsymbol{L} = 125$

Deeper networks fit more complicated geometries.

June 9, 2023

Key insights:

- $\textcircled{1} \Theta \text{ decays with angle.}$
- 2 Faster decay as depth increases.
- $\implies {\sf Set depth based on} \\ geometry!$

 $\frac{1}{L}\Theta(\boldsymbol{e}_1, \boldsymbol{x}'), \ \boldsymbol{L} = 625$

Deeper networks fit more complicated geometries.

Sam Buchanan

Deep Representations from the Ground Up

June 9, 2023

Resource Tradeoffs I: Certificates from Depth

Depth as a fitting resource: Larger depth L leads to a sharper kernel Θ and a smaller certificate g

 \implies Easier fitting!

Resource Tradeoffs II: Width as a Statistical Resource

Output $f_{\theta}(x)$

Input $oldsymbol{x} \in \mathbb{S}^{n_0-1}$

As width increases, $\Theta({m x},{m x}')$ concentrates about $\mathbb{E}_{ ext{init weights}}[\Theta({m x},{m x}')]$

< □ > < □ > < □ > < □ > < □ > < □ >

Resource Tradeoffs II: Width as a Statistical Resource

Proposition. Suppose that $n > Lpolylog(Ln_0)$. Then (whp)

$$\Theta(\boldsymbol{x}, \boldsymbol{x}') - \frac{n}{2} \sum_{\ell} \cos(\varphi^{\ell} \nu) \prod_{\ell'=\ell}^{L-1} \left(1 - \frac{\varphi^{\ell'} \nu}{\pi} \right) \bigg|$$

is small (simultaneously) for all $({m x},{m x}')\in {\mathcal M} imes {\mathcal M}.$

 $\Rightarrow set width n based on depth L and implicitly based on <math>\kappa, \Delta$

Resource Tradeoffs III: Data as a Statistical Resource

Depth L = 50

\Rightarrow Sample complexity N is dictated by kernel "aperture", which depends on geometry (κ,Δ) via L

End-to-End Generalization Guarantee

Theorem (very informal): For sufficiently regular one-dimensional manifolds and ReLU networks, when

depth \geq geometry, width \geq poly(depth), data \geq poly(depth),

randomly-initialized small-stepping gradient descent perfectly classifies the two manifolds!

Upshot:

- We understand the role each resource plays in solving the classification problem.
- We understand how intrinsic geometric properties of the data drive these resource requirements.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Outline

Recap and Outlook

1 Motivating Vignettes for the Nonlinear Manifold Model

2 The Identification Problem: Binary Classification of Two Curves Problem Formulation Intrinsic Geometric Properties of Manifold Data Network Architecture Resources and Training Procedure Training Deep Networks with Gradient Descent Resource Tradeoffs

3 The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold Diffusion Models for Distribution Learning

CRATE: Identification/Representation of Low-D Structures at Scale White-Box Architectures for Representation Learning CRATE: White-Box Transformers from Sparse MCR² Experimental Results on CRATE

5 Conclusions and A Look Ahead

Ideal Representation as Autoencoding + Linearization

Goal: seeking a low-dimensional representation Z in \mathbb{R}^d ($d \ll D$) for the data X on low-dimensional submanifolds such that:

$$oldsymbol{X} \subset \mathbb{R}^D \xrightarrow{f(oldsymbol{x},oldsymbol{ heta})} oldsymbol{Z} \subset \mathbb{R}^d \xrightarrow{g(oldsymbol{z},oldsymbol{\eta})} \hat{oldsymbol{X}} pprox oldsymbol{X} \in \mathbb{R}^D$$

We moreover want the representation Z to consist of certain canonical geometric configurations, say subspaces:

Focus here on $\mathcal{M} =$ one manifold (we understand identification!)

Standard Approaches to Linearize a Manifold, and Pitfalls

1. Embed training data in \mathbb{R}^d by gluing local isometries (manifold learning)

Figure credit: Lim, Oberhauser, and Nanda 2022

- + Provably correct with enough data [Lim et al. 2022], one-one mapping
- No standard generalization to test data without retraining, difficult to scale to high-dimensional datasets

Sam Buchanan

Deep Representations from the Ground U

June 9, 2023

Standard Approaches to Linearize a Manifold, and Pitfalls

2. Parameterize f,g with deep networks, regularized reconstruction training:

$$\min_{f,g} \mathop{\mathbb{E}}_{\mathbf{X}} \left[\| \mathbf{X} - g(f(\mathbf{X})) \|_{\mathrm{F}}^2 \right] + R(f,g)$$

Encompasses most deep net autoencoders (variational, denoising, VQGAN-type)

- + Truly learns a representation of the distribution, one-one mapping with proper regularization
- Black-box, no mathematical guarantees in regimes of interest

Sam Buchanan

Manifold Flattening with Second-Order Information

Recent approach to "have it all": [Psenka, Pai, Raman, Sastry, Ma 2023]

- Ask for **flattening**, rather than *isometry*
- Use second-order local information (better efficiency)
- Gluing as a multi-layer, invertible process!

Visualization of Psenka et al.'s Method

figures/flatnet-music-video.mp4

э

Scaling Psenka et al.'s Method to MNIST

$$D=784$$
 , $d\approx 12$

Latent interpolation of two 2s

June 9, 2023

< □ > < □ > < □ > < □ >

< ∃⇒

Limitations of Perfect Manifold Linearization (+ Relaxation)

Still hard to scale this to modern high-dim datasets (ImageNet, LAION-5B)

Practically-motivated solution: give up on one-one representation \implies distribution learning

Spectacular Success of Distribution Learning: Diffusion Models

Diffusion models let us generate new samples of our data X...

 $figures/diffusion-iterations-lastlong.m_{\rm I}$

...by incrementally transforming $\mathrm{Law}({\bm{X}})$ to $\mathrm{Law}({\bm{Z}}) = \mathcal{N}({\bm{0}}, {\bm{I}}_D)$ and back

Diffusion Models: Conceptual Idea

Conceptual idea: Transform data into noise, and back!

figures/curve-diffusion-sin.r

figures/curve-diffusion-circl

Outline for understanding diffusion models: (next slides)

- How do we transform data into noise?
- How do we transform noise back into data?
- How do we actually implement it? (finite samples and efficient computation)

Math of Diffusion Models: Data to Noise (SDEs)

Transform data into noise with the "Ornstein-Uhlenbeck process":

$$\mathrm{d}\boldsymbol{x}_t = -\boldsymbol{x}_t\,\mathrm{d}t + \sqrt{2}\,\mathrm{d}\boldsymbol{w}_t$$

 $\boldsymbol{x}_0 = \boldsymbol{x}$

This is a "stochastic differential equation".

???

Math of Diffusion Models: Data to Noise (SDEs)

Transform data into noise with the "Ornstein-Uhlenbeck process":

$$\mathrm{d}\boldsymbol{x}_t = -\boldsymbol{x}_t \,\mathrm{d}t + \sqrt{2} \,\mathrm{d}\boldsymbol{w}_t$$

 $x_0 = x$

This is a "stochastic differential equation". Formal intuition: this notation means

$$\boldsymbol{x}_t = -\int_0^t \boldsymbol{x}_s \,\mathrm{d}s + \sqrt{2}\int_0^t \mathrm{d}\boldsymbol{w}_s, \quad t \ge 0.$$

The last integral is like a sum of gaussians, and $\int_0^t \mathrm{d} m{w}_s = m{w}_t$. Thus

$$\boldsymbol{x}_t = e^{-t} \boldsymbol{x}_0 + \sqrt{2} e^{-t} \int_0^t e^s \, \mathrm{d} \boldsymbol{w}_s.$$

Now term two is like a weighted sum of gaussians! In particular

Law
$$(\boldsymbol{x}_t) = \mathcal{N}\left(e^{-t}\boldsymbol{x}, (1-e^{-2t})\boldsymbol{I}\right).$$

Closed-Form OU Evolution

For the OU process:

$$\operatorname{Law}(\boldsymbol{x}_t) = \mathcal{N}\left(e^{-t}\boldsymbol{x}, (1-e^{-2t})\boldsymbol{I}\right)$$

If x is a random variable, then

figures/curve-diffusion-sin.r figures/curve-diffusion-circl

 $\implies x_t$ has a density $ho_t!$ Linear convergence to normality!

Math of Diffusion Models: Noise to Data

If we stop the process at time T>0, $x_t^{\leftarrow}=x_{T-t}$ also satisfies a SDE:

$$\mathrm{d}\boldsymbol{x}_{t}^{\leftarrow} = (\boldsymbol{x}_{t}^{\leftarrow} + 2\nabla \log \rho_{T-t}(\boldsymbol{x}_{t}^{\leftarrow})) \,\mathrm{d}t + \sqrt{2} \,\mathrm{d}\boldsymbol{w}_{t}$$

figures/curve-diffusion-sin-r

figures/curve-diffusion-sin-r

\implies discretize, and generate new samples from data!

Math of Diffusion Models: Actually Implementing It One (big) problem: We don't know Law(x)!

figures/diffusion-iterations-lastlong.m

E.g.
$$Law(x) = \{ distribution of natural images \} ... \}$$

Math of Diffusion Models: Sampling with Score Matching

Idea: sampling follows the process

$$\mathrm{d}\boldsymbol{x}_{t}^{\leftarrow} = (\boldsymbol{x}_{t}^{\leftarrow} + 2\nabla \log \rho_{T-t}(\boldsymbol{x}_{t}^{\leftarrow})) \,\mathrm{d}t + \sqrt{2} \,\mathrm{d}\boldsymbol{w}_{t} \tag{1}$$

Tweedie's formula (1956): Let $y = e^{-t}x + \mathcal{N}(\mathbf{0}, (1 - e^{-2t})I)$. Then

$$e^{-t}\mathbb{E}[\boldsymbol{x} \mid \boldsymbol{y}] = \boldsymbol{y} + (1 - e^{-2t})\nabla \log \rho_t(\boldsymbol{y}).$$

⇒ equivalence between estimation (denoising) and score matching! Many authors ([Hyvärinen 2005], [Vincent 2011], [Song & Ermon 2019], [Ho, Jain, & Abbeel 2020]): Train a neural network to perform estimation

$$\min_{F:\mathbb{R}^D\times\mathbb{R}\to\mathbb{R}^D} \mathbb{E}_{\boldsymbol{x},\boldsymbol{g}\sim\mathcal{N}(\boldsymbol{0},\boldsymbol{I})} \left[\left\| F\left(e^{-t}\boldsymbol{x} + (1-e^{-2t})^{1/2}\boldsymbol{g};t\right) + \frac{1}{(1-e^{-2t})^{1/2}}\boldsymbol{g} \right\|_2^2 \right]$$

then plug F into Eq. (1) to sample!

A B A B A B A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A

Conceptual Pipeline for Diffusion Models

• Train score estimation network F with i.i.d. samples x_i , g_{ij} :

$$\min_{F} \sum_{i,j,t} \left\| F\left(e^{-t} \boldsymbol{x}_{i} + (1 - e^{-2t})^{1/2} \boldsymbol{g}_{ij}; t \right) + \frac{1}{(1 - e^{-2t})^{1/2}} \boldsymbol{g}_{ij} \right\|_{2}^{2}$$

• Sample as though F is the true score:

$$\mathrm{d}\boldsymbol{x}_t^{\leftarrow} = (\boldsymbol{x}_t^{\leftarrow} + 2F(\boldsymbol{x}_t^{\leftarrow}; T - t))\,\mathrm{d}t + \sqrt{2}\,\mathrm{d}\boldsymbol{w}_t$$

figures/curve-diffusion-circl

figures/curve-diffusion-circl

Pitfalls of Diffusion Models

Despite impressive performance and excitement, critical issues remain

 $figures/diffusion-iterations-lastlong.m_{\rm I}$

1. Good learning of $\nabla \log \rho_t \iff$ network F has proper architecture

Sam Buchanan

Deep Representations from the Ground U

June 9, 2023

Pitfalls of Diffusion Models

Despite impressive performance and excitement, critical issues remain

 $figures/diffusion-iterations-lastlong.m_{\rm I}$

2. Black box learned representation (no identification/control)

Sam Buchanan

Deep Representations from the Ground U

June 9, 2023
Outline

Recap and Outlook

1 Motivating Vignettes for the Nonlinear Manifold Model

2 The Identification Problem: Binary Classification of Two Curves Problem Formulation Intrinsic Geometric Properties of Manifold Data Network Architecture Resources and Training Procedure Training Deep Networks with Gradient Descent Resource Tradeoffs

3 The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold Diffusion Models for Distribution Learning

CRATE: Identification/Representation of Low-D Structures at Scale White-Box Architectures for Representation Learning CRATE: White-Box Transformers from Sparse MCR² Experimental Results on CRATE

5 Conclusions and A Look Ahead

Identification/Representation of High-Dim Structured Data

Focus on one half of our goal:

Given samples $X = [x_1, \dots, x_m] \subset \cup_{j=1}^k \mathcal{M}_j$, seek a good representation $Z = [z_1, \dots, z_m] \subset \mathbb{R}^d$ through a continuous mapping: $f(x, \theta) : x \in \mathbb{R}^D \mapsto z \in \mathbb{R}^d$.

So far:

- **Resource requirements** to *identify* nonlinear manifolds with deep nets
- Challenges with popular approaches to representation

How to obtain a white-box architecture f that simultaneously identifies and represents large-scale datasets?

・ロト ・ 同ト ・ ヨト ・ ヨト

Recap: White-Box Deep Networks

A promising approach: signal models \implies deep architectures

- Convolutional sparse coding networks [Papyan et al. 2018]
- Scattering networks [Bruna & Mallat 2013]
- ReduNets [Chan, Yu et al. 2022]

Figure: Left: ReduNet layer. Right: Scattering Network [Bruna & Mallat 2013] [Wiatowski & Bölcskei 2018] (only 2-3 layers).

Pitfall of existing methods: Challenging to scale to massive datasets with strong performance

Sam	D	ha	
Jaill	Duc	.IIai	IIaII

Improved White-Box Scaling by Improved Signal Modeling?

So far: Each sample is drawn from a mixture of manifolds

Better? Each sample \supset correlated tokens—mixture of manifold marginals!

Sam Buchanan	Deep Representations from the Ground Up	June 9, 2023 54 /	74
--------------	---	-------------------	----

CRATE: A White-Box Transformer via Sparse MCR² A white-box, mathematically interpretable, transformer-like deep network architecture from **iterative unrolling** optimization schemes to incrementally optimize the sparse rate reduction objective:

$$\max_{f \in \mathcal{F}} \mathbb{E}_{\boldsymbol{Z}} \left[\Delta R(\boldsymbol{Z}; \boldsymbol{U}_{[K]}) - \|\boldsymbol{Z}\|_0 \right], \quad \boldsymbol{Z} = f(\boldsymbol{X}).$$

CRATE: White-Box Transformers via Sparse Rate Reduction https://arxiv.org/abs/2306.01129

Yaodong Yu (UCB)

Druv Pai (UCB)

Sparse MCR² Objective and Incremental Representation

The sparse rate reduction (Sparse MCR^2) objective is defined as

$$\arg \max_{f \in \mathcal{F}} \mathbb{E}_{\mathbf{Z}} \left[\Delta R(\mathbf{Z}; \mathbf{U}_{[K]}) - \|\mathbf{Z}\|_{0} \right]$$

=
$$\arg \min_{f \in \mathcal{F}} \mathbb{E}_{\mathbf{Z}} \left[\underbrace{R^{c}(\mathbf{Z}; \mathbf{U}_{[K]})}_{\text{compression}} + \underbrace{\|\mathbf{Z}\|_{0} - R(\mathbf{Z})}_{\text{sparsification}} \right].$$

 $oldsymbol{U}_{[K]} = (oldsymbol{U}_1, \dots, oldsymbol{U}_K)$, $oldsymbol{U}_k \in \mathbb{R}^{d imes p}$ are subspaces parameterizing the marginal distribution of tokens $(z_i)_{i=1}^N$

56 / 74

Sparse MCR² Objective and Incremental Representation The sparse rate reduction (Sparse MCR²) objective is defined as

$$\begin{split} \arg \max_{f \in \mathcal{F}} \mathbb{E}_{\mathbf{Z}} \left[\Delta R(\mathbf{Z}; \mathbf{U}_{[K]}) - \|\mathbf{Z}\|_{0} \right] \\ = \arg \min_{f \in \mathcal{F}} \mathbb{E}_{\mathbf{Z}} \left[\underbrace{R^{c}(\mathbf{Z}; \mathbf{U}_{[K]})}_{\text{compression}} + \underbrace{\|\mathbf{Z}\|_{0} - R(\mathbf{Z})}_{\text{sparsification}} \right]. \end{split}$$

The global transformation f is realized through local transformations:

$$f \colon \boldsymbol{X} \xrightarrow{f^0} \boldsymbol{Z}^0 \to \dots \to \boldsymbol{Z}^\ell \xrightarrow{f^\ell} \boldsymbol{Z}^{\ell+1} \to \dots \to \boldsymbol{Z}^L = \boldsymbol{Z}$$

Each f^{ℓ} deforms Z^{ℓ} according to its own local signal model $U^{\ell}_{[K]}$.

Recap: Compression and Expansion in MCR² Compression:

$$R^c(\boldsymbol{Z};\boldsymbol{U}_{[K]}) = \frac{1}{2}\sum_{k=1}^K \operatorname{logdet}\left(\boldsymbol{I} + \frac{p}{N\epsilon^2}(\boldsymbol{U}_k^*\boldsymbol{Z})^*(\boldsymbol{U}_k^*\boldsymbol{Z})\right)$$

Expansion:

$$R(\boldsymbol{Z}) = \frac{1}{2} \sum_{k=1}^{K} \operatorname{logdet} \left(\boldsymbol{I} + \frac{d}{N\epsilon^2} \boldsymbol{Z}^* \boldsymbol{Z} \right)$$

→ ∃ →

Sparse MCR^2 Objective and Incremental Representation

The sparse rate reduction (Sparse MCR²) objective is defined as

How to construct a representation f to incrementally optimize the compression term and the sparsification term?

Sam Buchanan	Deep Representations from the Ground Up		June 9,	2023		58 / 74
	▲ E	□ ▶ ∢ 🗗 ▶	< ≣ >	< ≣ >	÷.	$\mathcal{O}\mathcal{A}\mathcal{O}$

Compression in Sparse MCR²

To optimize the compression term $R^c(\mathbf{Z}; \mathbf{U}_{[K]})$, we propose to compress the set of tokens against the subspaces $(\mathbf{U}_k)_{k=1}^K$ by minimizing the coding rate via "approximate" gradient descent

$$\begin{split} \text{Gradient Descent}): \quad & \boldsymbol{Z}^{\ell} - \kappa \nabla_{\boldsymbol{Z}} R^c(\boldsymbol{Z}^{\ell}; \boldsymbol{U}_{[K]}) \\ & \approx \left(1 - \kappa \cdot \frac{p}{N\epsilon^2}\right) \boldsymbol{Z}^{\ell} + \kappa \cdot \frac{p}{N\epsilon^2} \cdot \text{MSSA}(\boldsymbol{Z}^{\ell} | \boldsymbol{U}_{[K]}), \end{split}$$

where MSSA is defined through an SSA operator as:

$$\begin{split} & \operatorname{SSA}(\boldsymbol{Z}|\boldsymbol{U}_k) = (\boldsymbol{U}_k^*\boldsymbol{Z})\operatorname{softmax}((\boldsymbol{U}_k^*\boldsymbol{Z})^*(\boldsymbol{U}_k^*\boldsymbol{Z})), \\ & \operatorname{MSSA}(\boldsymbol{Z}|\boldsymbol{U}_{[K]}) = \frac{p}{N\epsilon^2}\cdot \begin{bmatrix} \boldsymbol{U}_1, \dots, \boldsymbol{U}_K \end{bmatrix} \begin{bmatrix} \operatorname{SSA}(\boldsymbol{Z}|\boldsymbol{U}_1) \\ \vdots \\ & \operatorname{SSA}(\boldsymbol{Z}|\boldsymbol{U}_K) \end{bmatrix} \end{split}$$

No need for separate query-Q, key-K, value-V in transformer attention block.

Compression in Sparse MCR²

To optimize the compression term $R^c(\mathbf{Z}; \mathbf{U}_{[K]})$, we propose to compress the set of tokens against the subspaces $(\mathbf{U}_k)_{k=1}^K$ by minimizing the coding rate via "approximate" gradient descent

$$\boldsymbol{Z}^{\ell+1/2} = \boldsymbol{Z}^{\ell} + \mathtt{MSSA}(\boldsymbol{Z}^{\ell}|\boldsymbol{U}_{[K]}).$$

Figure: (a). Visualization of MSSA block; (b). Architecture of MSSA block.

Sparsification in Sparse MCR²

To optimize the sparsification term $\|Z\|_0 - R(Z)$, we posit a incoherent or orthogonal dictionary $D \in \mathbb{R}^{d \times d}$ and sparsify $Z^{\ell+1/2}$ with respect to D, that is

$$\boldsymbol{Z}^{\ell+1/2} = \boldsymbol{D}\boldsymbol{Z}^{\ell+1}.$$

By the incoherence assumption, we have $D^*D \approx I_d$; thus

$$R(\boldsymbol{Z}^{\ell+1}) \approx R(\boldsymbol{D}\boldsymbol{Z}^{\ell+1}) = R(\boldsymbol{Z}^{\ell+1/2}).$$

Thus we approximately optimize the sparsification objective with the following program:

$$Z^{\ell+1} = \operatorname{argmin}_{Z} \|Z\|_0$$
 subject to $Z^{\ell+1/2} = DZ$.

Sparsification in Sparse MCR^2

Given the sparse representation program

 $Z^{\ell+1} = \operatorname{argmin}_{Z} \|Z\|_{0}$ subject to $Z^{\ell+1/2} = DZ$.

we can relax it to an convex program, i.e., positive sparse coding:

$$\boldsymbol{Z}^{\ell+1} = \operatorname*{arg\,min}_{\boldsymbol{Z} \ge 0} \Big[\lambda \|\boldsymbol{Z}\|_1 + \|\boldsymbol{Z}^{\ell+1/2} - \boldsymbol{D}\boldsymbol{Z}\|_F^2 \Big].$$

We can incrementally optimize the above objective by performing an unrolled proximal gradient descent step, known as an ISTA step:

$$\begin{aligned} \boldsymbol{Z}^{\ell+1} &= \operatorname{ReLU}(\boldsymbol{Z}^{\ell+1/2} + \eta \boldsymbol{D}^* (\boldsymbol{Z}^{\ell+1/2} - \boldsymbol{D} \boldsymbol{Z}^{\ell+1/2}) - \eta \lambda \boldsymbol{1}) \\ &:= \operatorname{ISTA}(\boldsymbol{Z}^{\ell+1/2} \mid \boldsymbol{D}^{\ell}). \end{aligned}$$

The ISTA block uses much fewer parameters than transformer MLP block, and provides more interpretable representations.

Sparsification in Sparse MCR²

To optimize the sparsification term $\|Z\|_0 - R(Z)$, we propose to apply an unrolled proximal gradient descent step, known as an ISTA step:

$$Z^{\ell+1} = \text{ReLU}(Z^{\ell+1/2} + \eta D^* (Z^{\ell+1/2} - DZ^{\ell+1/2}) - \eta \lambda \mathbf{1})$$

:= ISTA(Z^{\ell+1/2} | D^{\ell}).

Figure: (a). Visualization of ISTA block; (b). Architecture of ISTA block.

One Layer of CRATE

Each layer of **CRATE** thus incrementally optimizes the compression term $R^{c}(\mathbf{Z}; \mathbf{U}_{[K]})$ and sparsification term $\|\mathbf{Z}\|_{0} - R(\mathbf{Z})$,

$$\mathbf{Z}^{\ell+1} = f^{\ell}(\mathbf{Z}^{\ell}) = \operatorname{ISTA}\left(\underbrace{(\operatorname{Id} + \operatorname{MSSA})(\mathbf{Z}^{\ell})}_{\mathbf{Z}^{\ell+1/2}}\right).$$

More specifically,

so the ℓ -th layer of the global representation f is

$$f^{\ell} \colon \mathbf{Z}^{\ell} \xrightarrow{\operatorname{Id+MSSA}} \mathbf{Z}^{\ell+1/2} \xrightarrow{\operatorname{ISTA}} \mathbf{Z}^{\ell+1}.$$

Overall White-Box CRATE Architecture

- Forward optimization: perform compression and sparsification.
- Learning from data: apply SGD to learn $(m{U}^\ell_{[K]},m{D}^\ell)^L_{\ell=1}$ from data.

A (1) > A (2) > A

Experiment I: Supervised Learning on ImageNet-1K

Experimental setup: let the CLS token of Z^L (i.e., the output token set of the last layer), and then apply a linear linear to perform supervised learning on ImageNet-1K using our proposed CRATE architecture.

 Table 1: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on ImageNet.

 For ImageNet/ImageNetReaL, we directly evaluate the top-1 accuracy. For other datasets, we use models that are pre-trained on ImageNet as initialization and the evaluate the transfer learning performance via fine-tuning.

Datasets	CRATE-T	CRATE-S	CRATE-B	CRATE-L	ViT-T	ViT-S
# parameters	6.09M	13.12M	22.80M	77.64M	5.72M	22.05M
ImageNet ImageNet ReaL	66.7 74.0	69.2 76.0	70.8 76.5	71.3 77.4	71.5 78.3	72.4 78.4

• CRATE demonstrates promising performance on the ImageNet-1K dataset, indicating its potential for further advancement.

イロト 不得 トイヨト イヨト

Experiment I: Supervised Learning on ImageNet-1K

Experimental setup: apply the CRATE model pre-trained on ImageNet-1K as initialization, and then evaluate transfer learning performance via fine-tuning.

Table 1: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on ImageNet. For ImageNet/ImageNetReaL, we directly evaluate the top-1 accuracy. For other datasets, we use models that are pre-trained on ImageNet as initialization and the evaluate the transfer learning performance via fine-tuning.

Datasets	CRATE-T	CRATE-S	CRATE-B	CRATE-L	ViT-T	ViT-S
# parameters	6.09M	13.12M	22.80M	77.64M	5.72M	22.05M
ImageNet	66.7	69.2	70.8	71.3	71.5	72.4
ImageNet ReaL	74.0	76.0	76.5	77.4	78.3	78.4
CIFAR10	95.5	96.0	96.8	97.2	96.6	97.2
CIFAR100	78.9	81.0	82.7	83.6	81.8	83.2
Oxford Flowers-102	84.6	87.1	88.7	88.3	85.1	88.5
Oxford-IIIT-Pets	81.4	84.9	85.3	87.4	88.5	88.6

- CRATE achieves performance close to thoroughly engineered vision transformers.
- Promising scaling behavior in CRATE.

イロト イヨト イヨト ・

Experiment II: Layer-wise Analysis of CRATE

Given a learned CRATE model, we measure the compression term of $Z^{\ell+1/2}$ (*left*, $R^c(Z^{\ell+1/2})$) and the sparsification term of $Z^{\ell+1}$ (*right*, $||Z^{\ell+1}||_0$) on train/validation samples at **each layer**.

 The learned CRATE model indeed performs its design objective – each layer incrementally optimizes the compression term and the sparsification term.

Experiment II: Layer-wise Analysis of CRATE

For comparison, we measure the compression/sparsification term of randomly initialized CRATE model and models at different epochs.

• Without learning from data, the random initialized CRATE model does not perform its design objective effectively.

Experiment III: Visualize Layer-wise Output of CRATE

We use heatmaps to visualize the output of each layer in CRATE $(Z^{\ell+1})$.

• We observe clear sparse and low-rank patterns of intermediate outputs of CRATE.

Experiment IV: Visualize Learned Subspaces of CRATE

We use heatmaps to visualize the correlations between different subspaces $(U_k)_{k=1}^K$ of each MSSA layer in CRATE, i.e., $[U_1^\ell, \ldots, U_K^\ell]^*[U_1^\ell, \ldots, U_K^\ell]$.

The learned subspaces in MSSA blocks are incoherent.

Sam Buchanan

< A > <

Outline

Recap and Outlook

1 Motivating Vignettes for the Nonlinear Manifold Model

2 The Identification Problem: Binary Classification of Two Curves Problem Formulation Intrinsic Geometric Properties of Manifold Data Network Architecture Resources and Training Procedure Training Deep Networks with Gradient Descent Resource Tradeoffs

3 The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold Diffusion Models for Distribution Learning

CRATE: Identification/Representation of Low-D Structures at Scale White-Box Architectures for Representation Learning CRATE: White-Box Transformers from Sparse MCR² Experimental Results on CRATE

5 Conclusions and A Look Ahead

A Parting Message

We've seen today

- What structures in modern data are we learning?
- Resource requirements for identifying nonlinear manifolds
- Manifold representation with manifold learning and diffusion
- Joint identification/representation via white-box transformers

For white-box deep networks, the future is bright!

figures/diffusion-iteratic

Thank You! Questions?

Call for Papers

- IEEE JSTSP Special Issue on Seeking Low-dimensionality in Deep Neural Networks (SLowDNN) Manuscript Due: Nov. 30, 2023.
- Conference on Parsimony and Learning (CPAL) January 2024, Hongkong, Manuscript Due: **Aug. 28, 2023**.

SCAN ME

CEU/PDH Certificates

You can receive an CEU/PDH certificate by completing the course and pass the quiz. Here is the quiz/evaluation form:

https://bit.ly/ICASSP23_QuizSC2