
ICASSP 2023 Short Course

Learning Nonlinear and Deep Representations from
High-Dimensional Data
From Theory to Practice

Lecture 7: Deep Representation Learning from the Ground Up

Sam Buchanan, Yi Ma, Qing Qu, Atlas Wang
John Wright, Yuqian Zhang, Zhihui Zhu

June 9, 2023

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 1 / 74

Recap and Outlook

Recap: Sparse Recovery72 Convex Methods for Sparse Signal Recovery

xo

Coe�cient space Rn `1 ball B1

Linear embedding A

Observation space Rm

y = Axo

observation

Polytope

P = A(B1)

Figure 3.3 Observation-Space Picture. The `1 ball is a convex polytope B1 in the
coe�cient space Rn. The linear map A projects this down to a lower dimensional set
P = A(B1) in the observation space Rm. The vertices vi of P are subsets of the
projections A⌫j of B1.

Observation Space Picture

We can also visualize `1 minimization in the space Rm of observation vectors y.

This picture is slightly more complicated, but turns out to be very useful. The

m ⇥ n matrix A maps n-dimensional vectors x to m ⌧ n dimensional vectors

y. Let us consider how the matrix A acts on the `1 ball B1 ⇢ Rn. Applying A

to each of the vectors x 2 B1, we obtain a lower-dimensional object P = A(B1),

which we visualize in Figure 3.3 (right). The lower-dimensional set P is a convex

polytope. Every vertex v of P is the image A⌫ of some vertex ⌫ = ±ei of B1.

More generally, every k-dimensional face of P is the image of some face of B1.

The polytope P consists of all points y0 of the form Ax0 for some x0 with

objective function kx0k1  1. `1 minimization corresponds to squeezing B1 down

to the origin, and then slowly expanding it until it first touches y. The touching

point is the image Ax̂ of the `1 minimizer – see Figure 3.4.

So, `1 will correctly recover xo whenever Axo is on the outside of P = A(B1).

For example, in Figure 3.3, all of the vertices of B1 map to the outside of A(B1),

and so `1 recovers any 1-sparse xo. However, certain edges (one-dimensional

faces) of B1 map to the inside of A(B1). `
1 minimization will not recover these

xo.

From this picture, it may be very surprising that `1 works as well as it does.

However, as we will see in the remainder of this chapter, the high-dimensional

picture di↵ers significantly from the low-dimensional picture (and our intuition!)

3.6 Phase Transitions in Sparse Recovery 115

Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n

ze
ro

s
η

 =
 k

 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 50
Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n

ze
ro

s
η

 =
 k

 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 100
Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n

ze
ro

s
η

 =
 k

 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 200
Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n

ze
ro

s
η

 =
 k

 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 400

Figure 3.15 Phase Transition in Sparse Recovery with Gaussian Matrices.
Each display plots the fraction of correct recoveries using `1 minimization, over a
suite of randomly generated problems. The vertical axis represents the fraction of
nonzero entries ⌘ = k/n in the target vector xo – the bottom corresponds to very
sparse vectors, while the top corresponds to fully dense vectors. The horizontal axis
represents the sampling ratio � = m/n – the left corresponds to drastically under
sampled problems (m⌧ n), while the right corresponds to almost fully observed
problems. For each (⌘, �) pair, we generate 200 random problems, which we solve
using CVX. We declare success if the recovered vector is accurate up to a relative
error  10�6. Several salient features emerge: first, there is an easy regime (lower
right corner) in which `1 minimization always succeeds. Second, there is a hard
regime (upper left corner) in which `1 minimization always fails. Finally, as n
increases, this transition between success and failure becomes increasingly sharp.

entries k that we can recover. We would like these relationships to be as sharp

and explicit as possible. To get some intuition for what to expect, we again resort

to numerical simulation. We fix n, and consider di↵erent levels of sparsity k, and

numbers of measurements m. For each pair (k, m), we generate a number of

random `1 minimization problems, with noiseless Gaussian measurements y =

Axo, and ask “For what fraction of these problems does `1 minimization correctly

recover xo?”

Figure 3.15 displays the result as a two dimensional image. Here, the horizontal

axis is the sampling ratio � = m/n. This ranges from zero on the left (a very

short, wide A) to one on the right (a nearly square A). The vertical axis is

the fraction of nonzeros ⌘ = k/n. Again, this ranges from zero at the bottom

(very sparse problems) to one at the top (denser problems). For each pair (⌘, �),

we generate 200 random problems. The intensity is the fraction of problems for

which `1 minimization succeeds. The four graphs, from left to right, show the

result for n = 50, 100, 200, 400.

This figure conveys several important pieces of information. First, as expected,

when m is large and k is small (the lower right corner of each graph), `1 mini-

mization always succeeds. Conversely, when m is small and k is large (the upper

left corner of each graph), `1 minimization always fails. Moreover, as n grows, the

transition between success and failure becomes increasingly abrupt. Put another

way, for high-dimensional problems, the behavior of `1 minimization is surpris-

ingly predictable: it either almost always succeeds, or almost always fails. The

line demarcating the sharp boundary between success and failure is known as a

phase transition.

Sparse approximation: structured signals, linear measurements

y = Axo, xo sparse, A ∈ Rm×n random

with convex optimization

x⋆ = argmin
x∈Rn

1

2
∥y −Ax∥22 + λ∥x∥1

and provable (high probability) guarantees

x⋆ = xo when measurements ≳ sparsity× log

(
measurements

sparsity

)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 2 / 74

Recap and Outlook

The Deep Learning Era

What role does low-dimensional structure play in the practice of
deep learning? (understand, improve, design...)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 3 / 74

Recap and Outlook

Focus of Today’s Lecture: Representation Learning

RD

M

M1

M2

Mj Goal: seeking a low-dimensional representation Z in
Rd (d ≪ D) for the data X on low-dimensional
submanifolds such that:

X ⊂ RD f(x,θ)−−−−−−→ Z ⊂ Rd g(z,η)−−−−−−→ X̂ ≈ X ∈ RD.

Two subproblems: identification and representation.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 4 / 74

Outline
Recap and Outlook

1 Motivating Vignettes for the Nonlinear Manifold Model

2 The Identification Problem: Binary Classification of Two Curves
Problem Formulation

Intrinsic Geometric Properties of Manifold Data
Network Architecture Resources and Training Procedure

Training Deep Networks with Gradient Descent
Resource Tradeoffs

3 The Representation Problem: Manifold Manipulation and Diffusion
(Perfectly) Linearizing One Manifold
Diffusion Models for Distribution Learning

4 CRATE: Identification/Representation of Low-D Structures at Scale
White-Box Architectures for Representation Learning
CRATE: White-Box Transformers from Sparse MCR2

Experimental Results on CRATE

5 Conclusions and A Look Ahead

Motivating Vignettes for the Nonlinear Manifold Model

Low-Dimensional Structure in Deep Learning Problems

Appropriate mathematical model for data with low-dimensional
structure in the deep learning era: nonlinear manifolds?

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 5 / 74

Motivating Vignettes for the Nonlinear Manifold Model

Vignette I: Large-Scale Image Classification

Task: Learn a deep network mapping images → object classes from data.

→ {hedgehog,
hairbrush}

Massive driver of innovation in the last 10 years (ImageNet, ResNet, ViT...)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 6 / 74

Motivating Vignettes for the Nonlinear Manifold Model

Nonlinear Variabilities in Natural Images
Structure in natural data

Structure in natural data is due to

I Statistical variability

COMPLEX

I Physical nuisances (pose, illumination, etc.)

SIMPLE

2 / 50

Structure in natural data
Structure in natural data is due to

I Statistical variability

COMPLEX

I Physical nuisances (pose, illumination, etc.)

SIMPLE

2
0
2
1
-0

8
-0

9 Manifold Classification with Deep

Neural Networks

Structure in natural data

Succeeds up to >45o of pose::

Succeeds up to translations of 20% of face width, up to 30o in-plane rotation::

Recognition rate for synthetic misalignments (Multi-PIE)

Wagner, W., Ganesh, Zhou, Ma. CVPR 2009

How well does it work?

=⇒ nonlinear, geometric structure

• 6D for 3D rigid pose; 8D for perspective; 9D for certain illumination...

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 7 / 74

Motivating Vignettes for the Nonlinear Manifold Model

Limitations of a Purely Data-Driven Approach?

Can fail to learn even simple invariances in the data:

From [Azulay and Weiss, 2019]

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 8 / 74

Motivating Vignettes for the Nonlinear Manifold Model

Vignette II: Deep Learning in Scientific Discovery

One binary black hole merger:

Gravitational Wave AstronomyGravitational waves

Video: LIGO Lab Caltech : MIT (https://www.youtube.com/watch?v=1agm33iEAuo) 2

Top image, audio: LIGO Scientific Collaboration (https://www.ligo.org/science/GW-Inspiral.php)
Bottom image: Abbott, Benjamin P., et al. "Observation of gravitational waves from a binary black hole merger." Physical review

letters 116.6 (2016): 061102. 3

Top image, audio: LIGO Scientific Collaboration (https://www.ligo.org/science/GW-Inspiral.php)
Bottom image: Abbott, Benjamin P., et al. "Observation of gravitational waves from a binary black hole merger." Physical review

letters 116.6 (2016): 061102. 3

Many mergers

(varying mass M1, M2):

=⇒ low-dim manifold

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 9 / 74

Motivating Vignettes for the Nonlinear Manifold Model

Gravitational Wave Astronomy as Parametric Detection

0

⇢0

S�

⇢1

MF

Optimal

Is observation x = sγ + z or x = z?
=⇒ two (noisy) manifolds!

Classical approach: template matching maxγ⟨aγ ,x⟩ > τ?
Issues: Optimality? Complexity?

Unknown unknowns? Unknown noise?

Ideally: Combine low-dim structure of Γ with data-driven for statistical structure...

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 10 / 74

Motivating Vignettes for the Nonlinear Manifold Model

Gravitational Wave Astronomy as Parametric Detection

0

⇢0

S�

⇢1

MF

Optimal

Is observation x = sγ + z or x = z?
=⇒ two (noisy) manifolds!

Classical approach: template matching maxγ⟨aγ ,x⟩ > τ?

Issues: Optimality? Complexity?
Unknown unknowns? Unknown noise?

Ideally: Combine low-dim structure of Γ with data-driven for statistical structure...

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 10 / 74

Motivating Vignettes for the Nonlinear Manifold Model

Gravitational Wave Astronomy as Parametric Detection

0

⇢0

S�

⇢1

MF

Optimal

Is observation x = sγ + z or x = z?
=⇒ two (noisy) manifolds!

Classical approach: template matching maxγ⟨aγ ,x⟩ > τ?
Issues: Optimality? Complexity?

Unknown unknowns? Unknown noise?

Ideally: Combine low-dim structure of Γ with data-driven for statistical structure...

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 10 / 74

Motivating Vignettes for the Nonlinear Manifold Model

Takeaways from the Examples

Two key takeaways:

• Data with nonlinear, geometric structure pervade successful
practical applications of deep learning

• Important practical issues (robustness/invariance; resource
efficiency; performance) naturally linked to low-dim structure

Next: Understanding mathematically when and why deep learning
successfully classifies data with nonlinear geometric structure.

=⇒

Hedgehogs

Hairbrushes

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 11 / 74

Motivating Vignettes for the Nonlinear Manifold Model

Takeaways from the Examples

Two key takeaways:

• Data with nonlinear, geometric structure pervade successful
practical applications of deep learning

• Important practical issues (robustness/invariance; resource
efficiency; performance) naturally linked to low-dim structure

Next: Understanding mathematically when and why deep learning
successfully classifies data with nonlinear geometric structure.

=⇒

Hedgehogs

Hairbrushes

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 11 / 74

Outline
Recap and Outlook

1 Motivating Vignettes for the Nonlinear Manifold Model

2 The Identification Problem: Binary Classification of Two Curves
Problem Formulation

Intrinsic Geometric Properties of Manifold Data
Network Architecture Resources and Training Procedure

Training Deep Networks with Gradient Descent
Resource Tradeoffs

3 The Representation Problem: Manifold Manipulation and Diffusion
(Perfectly) Linearizing One Manifold
Diffusion Models for Distribution Learning

4 CRATE: Identification/Representation of Low-D Structures at Scale
White-Box Architectures for Representation Learning
CRATE: White-Box Transformers from Sparse MCR2

Experimental Results on CRATE

5 Conclusions and A Look Ahead

The Identification Problem: Binary Classification of Two Curves Problem Formulation

A Mathematical Model Problem for Deep Learning +
Low-Dimensional Structure

Formalizing data with nonlinear geometric structure: Low-dimensional
Riemannian submanifolds of high-dimensional space!

Hedgehogs

Hairbrushes

=⇒

Sn0−1

M+

M−
ρ

1/κ

∆

The multiple manifold problem: K-way classification of data on
d-dimensional Riemannian manifolds in Sn0−1.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 12 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

The Two Manifold Problem

Sn0−1

M+

M−
ρ

1/κ

∆

Problem. Given N i.i.d. labeled samples (x1, y(x1)), . . . ,
(xN , y(xN)) from M = M+ ∪M−, use gradient descent to train a
deep network fθ that perfectly labels the manifolds:

sign (fθ(x)) = y(x) for all x ∈ M.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 13 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

The Two Manifold Problem: Key Aspects

Sn0−1

M+

M−
ρ

1/κ

∆

Problem. Given N i.i.d. labeled sam-
ples (x1, y(x1)), . . . , (xN , y(xN)) from
M = M+ ∪ M−, use gradient descent to
train a deep network fθ that perfectly labels
the manifolds:

sign (fθ(x)) = y(x) ∀x ∈ M.

• Binary classification with a deep neural network

• High-dimensional data with (unknown!) low-dimensional structure

• Statistical structure, and asking for “strong” generalization

We will focus on the case of one-dimensional manifolds (curves)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 14 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

What Can We Hope to Understand Here?
Our “barometer”: compressed sensing.72 Convex Methods for Sparse Signal Recovery

xo

Coe�cient space Rn `1 ball B1

Linear embedding A

Observation space Rm

y = Axo

observation

Polytope

P = A(B1)

Figure 3.3 Observation-Space Picture. The `1 ball is a convex polytope B1 in the
coe�cient space Rn. The linear map A projects this down to a lower dimensional set
P = A(B1) in the observation space Rm. The vertices vi of P are subsets of the
projections A⌫j of B1.

Observation Space Picture

We can also visualize `1 minimization in the space Rm of observation vectors y.

This picture is slightly more complicated, but turns out to be very useful. The

m ⇥ n matrix A maps n-dimensional vectors x to m ⌧ n dimensional vectors

y. Let us consider how the matrix A acts on the `1 ball B1 ⇢ Rn. Applying A

to each of the vectors x 2 B1, we obtain a lower-dimensional object P = A(B1),

which we visualize in Figure 3.3 (right). The lower-dimensional set P is a convex

polytope. Every vertex v of P is the image A⌫ of some vertex ⌫ = ±ei of B1.

More generally, every k-dimensional face of P is the image of some face of B1.

The polytope P consists of all points y0 of the form Ax0 for some x0 with

objective function kx0k1  1. `1 minimization corresponds to squeezing B1 down

to the origin, and then slowly expanding it until it first touches y. The touching

point is the image Ax̂ of the `1 minimizer – see Figure 3.4.

So, `1 will correctly recover xo whenever Axo is on the outside of P = A(B1).

For example, in Figure 3.3, all of the vertices of B1 map to the outside of A(B1),

and so `1 recovers any 1-sparse xo. However, certain edges (one-dimensional

faces) of B1 map to the inside of A(B1). `
1 minimization will not recover these

xo.

From this picture, it may be very surprising that `1 works as well as it does.

However, as we will see in the remainder of this chapter, the high-dimensional

picture di↵ers significantly from the low-dimensional picture (and our intuition!)

3.6 Phase Transitions in Sparse Recovery 115

Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n

ze
ro

s
η

 =
 k

 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 50
Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n

ze
ro

s
η

 =
 k

 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 100
Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n

ze
ro

s
η

 =
 k

 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 200
Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n

ze
ro

s
η

 =
 k

 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 400

Figure 3.15 Phase Transition in Sparse Recovery with Gaussian Matrices.
Each display plots the fraction of correct recoveries using `1 minimization, over a
suite of randomly generated problems. The vertical axis represents the fraction of
nonzero entries ⌘ = k/n in the target vector xo – the bottom corresponds to very
sparse vectors, while the top corresponds to fully dense vectors. The horizontal axis
represents the sampling ratio � = m/n – the left corresponds to drastically under
sampled problems (m⌧ n), while the right corresponds to almost fully observed
problems. For each (⌘, �) pair, we generate 200 random problems, which we solve
using CVX. We declare success if the recovered vector is accurate up to a relative
error  10�6. Several salient features emerge: first, there is an easy regime (lower
right corner) in which `1 minimization always succeeds. Second, there is a hard
regime (upper left corner) in which `1 minimization always fails. Finally, as n
increases, this transition between success and failure becomes increasingly sharp.

entries k that we can recover. We would like these relationships to be as sharp

and explicit as possible. To get some intuition for what to expect, we again resort

to numerical simulation. We fix n, and consider di↵erent levels of sparsity k, and

numbers of measurements m. For each pair (k, m), we generate a number of

random `1 minimization problems, with noiseless Gaussian measurements y =

Axo, and ask “For what fraction of these problems does `1 minimization correctly

recover xo?”

Figure 3.15 displays the result as a two dimensional image. Here, the horizontal

axis is the sampling ratio � = m/n. This ranges from zero on the left (a very

short, wide A) to one on the right (a nearly square A). The vertical axis is

the fraction of nonzeros ⌘ = k/n. Again, this ranges from zero at the bottom

(very sparse problems) to one at the top (denser problems). For each pair (⌘, �),

we generate 200 random problems. The intensity is the fraction of problems for

which `1 minimization succeeds. The four graphs, from left to right, show the

result for n = 50, 100, 200, 400.

This figure conveys several important pieces of information. First, as expected,

when m is large and k is small (the lower right corner of each graph), `1 mini-

mization always succeeds. Conversely, when m is small and k is large (the upper

left corner of each graph), `1 minimization always fails. Moreover, as n grows, the

transition between success and failure becomes increasingly abrupt. Put another

way, for high-dimensional problems, the behavior of `1 minimization is surpris-

ingly predictable: it either almost always succeeds, or almost always fails. The

line demarcating the sharp boundary between success and failure is known as a

phase transition.

y = Axo; x⋆ = argmin
x∈Rn

1

2
∥y −Ax∥22 + λ∥x∥1

x⋆ = xo when measurements ≳ sparsity× log

(
measurements

sparsity

)

Questions:
What are our ‘measurement resources’ in the two manifold problem?
What are intrinsic structural properties of nonlinear manifold data?

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 15 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

The Two Manifold Problem: Geometric Parameters

Sn0−1

M+

M−
ρ

1/κ

∆

Problem. Given N i.i.d. labeled sam-
ples (x1, y(x1)), . . . , (xN , y(xN)) from
M = M+ ∪ M−, use gradient descent to
train a deep network fθ that perfectly labels
the manifolds:

sign (fθ(x)) = y(x) ∀x ∈ M.

A set of ‘sufficient’ intrinsic problem difficulty parameters:

• Curvature κ;

• Separation ∆;

• Separation ‘frequency’ V.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 16 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

Intrinsic Structural Properties I: Separation

Intuitively: How close are the class manifolds?

Sn0−1

M+

M−
ρ

1/κ

∆

Mathematically:
∆ = inf

x,x′∈M

{
dextrinsic(x,x

′)
}

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 17 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

Intrinsic Structural Properties II: Curvature

Intuitively: Local deviation from flatness of the manifold.

Sn0−1

M+

M−
ρ

1/κ

∆

Mathematically:

κ = sup
x∈M

∥∥∥∥
(
I − xx∗

∥x∥22

)
ẍ

∥∥∥∥
2

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 18 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

Intrinsic Structural Properties III: V-Number

Intuitively: How much do the class manifolds loop back on themselves?

x

Mathematically:

V(M) = sup
x∈M

NM

({
x′
∣∣∣∣

dintrinsic(x,x
′) > τ1

dextrinsic(x,x
′) < τ2

}
,

1√
1 + κ2

)

Here, NM(T, δ) is the covering number of T ⊆ M by δ balls in dintrinsic.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 19 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

The Two Manifold Problem: Geometric Parameters

Sn0−1

M+

M−
ρ

1/κ

∆

Problem. Given N i.i.d. labeled sam-
ples (x1, y(x1)), . . . , (xN , y(xN)) from
M = M+ ∪ M−, use gradient descent to
train a deep network fθ that perfectly labels
the manifolds:

sign (fθ(x)) = y(x) ∀x ∈ M.

A set of ‘sufficient’ intrinsic problem difficulty parameters:

• Curvature κ;

• Separation ∆;

• Separation ‘frequency’ V.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 20 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

Network Architecture and Training Procedure

• Fully connected with ReLUs

• Gaussian initialization θ0

• Trained with N i.i.d. samples
from measure µ of density ρ

. . .

. . .

...
...

...
...

...
...

. . .

Output fθ(x)

Input x ∈ Sn0−1

Width n

Depth L

N
(
0, 2

n

)

N
(
0, 2

n

)

N (0, 1)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 21 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

Network Architecture and Training Procedure

• Fully connected with ReLUs

• Gaussian initialization θ0

• Trained with N i.i.d. samples
from measure µ of density ρ

. . .

. . .

...
...

...
...

...
...

. . .

Output fθ(x)

Input x ∈ Sn0−1

Width n

Depth L

N
(
0, 2

n

)

N
(
0, 2

n

)

N (0, 1)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 21 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

Resource Tradeoffs: From Linear to Nonlinear
The “linear” case (compressed sensing):72 Convex Methods for Sparse Signal Recovery

xo

Coe�cient space Rn `1 ball B1

Linear embedding A

Observation space Rm

y = Axo

observation

Polytope

P = A(B1)

Figure 3.3 Observation-Space Picture. The `1 ball is a convex polytope B1 in the
coe�cient space Rn. The linear map A projects this down to a lower dimensional set
P = A(B1) in the observation space Rm. The vertices vi of P are subsets of the
projections A⌫j of B1.

Observation Space Picture

We can also visualize `1 minimization in the space Rm of observation vectors y.

This picture is slightly more complicated, but turns out to be very useful. The

m ⇥ n matrix A maps n-dimensional vectors x to m ⌧ n dimensional vectors

y. Let us consider how the matrix A acts on the `1 ball B1 ⇢ Rn. Applying A

to each of the vectors x 2 B1, we obtain a lower-dimensional object P = A(B1),

which we visualize in Figure 3.3 (right). The lower-dimensional set P is a convex

polytope. Every vertex v of P is the image A⌫ of some vertex ⌫ = ±ei of B1.

More generally, every k-dimensional face of P is the image of some face of B1.

The polytope P consists of all points y0 of the form Ax0 for some x0 with

objective function kx0k1  1. `1 minimization corresponds to squeezing B1 down

to the origin, and then slowly expanding it until it first touches y. The touching

point is the image Ax̂ of the `1 minimizer – see Figure 3.4.

So, `1 will correctly recover xo whenever Axo is on the outside of P = A(B1).

For example, in Figure 3.3, all of the vertices of B1 map to the outside of A(B1),

and so `1 recovers any 1-sparse xo. However, certain edges (one-dimensional

faces) of B1 map to the inside of A(B1). `
1 minimization will not recover these

xo.

From this picture, it may be very surprising that `1 works as well as it does.

However, as we will see in the remainder of this chapter, the high-dimensional

picture di↵ers significantly from the low-dimensional picture (and our intuition!)

3.6 Phase Transitions in Sparse Recovery 115

Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n
ze

ro
s

η
 =

 k
 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 50
Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n
ze

ro
s

η
 =

 k
 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 100
Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n
ze

ro
s

η
 =

 k
 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 200
Sampling Ratio δ = m / n

F
ra

ct
io

n
 o

f
N

o
n
ze

ro
s

η
 =

 k
 /
 n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n = 400

Figure 3.15 Phase Transition in Sparse Recovery with Gaussian Matrices.
Each display plots the fraction of correct recoveries using `1 minimization, over a
suite of randomly generated problems. The vertical axis represents the fraction of
nonzero entries ⌘ = k/n in the target vector xo – the bottom corresponds to very
sparse vectors, while the top corresponds to fully dense vectors. The horizontal axis
represents the sampling ratio � = m/n – the left corresponds to drastically under
sampled problems (m⌧ n), while the right corresponds to almost fully observed
problems. For each (⌘, �) pair, we generate 200 random problems, which we solve
using CVX. We declare success if the recovered vector is accurate up to a relative
error  10�6. Several salient features emerge: first, there is an easy regime (lower
right corner) in which `1 minimization always succeeds. Second, there is a hard
regime (upper left corner) in which `1 minimization always fails. Finally, as n
increases, this transition between success and failure becomes increasingly sharp.

entries k that we can recover. We would like these relationships to be as sharp

and explicit as possible. To get some intuition for what to expect, we again resort

to numerical simulation. We fix n, and consider di↵erent levels of sparsity k, and

numbers of measurements m. For each pair (k, m), we generate a number of

random `1 minimization problems, with noiseless Gaussian measurements y =

Axo, and ask “For what fraction of these problems does `1 minimization correctly

recover xo?”

Figure 3.15 displays the result as a two dimensional image. Here, the horizontal

axis is the sampling ratio � = m/n. This ranges from zero on the left (a very

short, wide A) to one on the right (a nearly square A). The vertical axis is

the fraction of nonzeros ⌘ = k/n. Again, this ranges from zero at the bottom

(very sparse problems) to one at the top (denser problems). For each pair (⌘, �),

we generate 200 random problems. The intensity is the fraction of problems for

which `1 minimization succeeds. The four graphs, from left to right, show the

result for n = 50, 100, 200, 400.

This figure conveys several important pieces of information. First, as expected,

when m is large and k is small (the lower right corner of each graph), `1 mini-

mization always succeeds. Conversely, when m is small and k is large (the upper

left corner of each graph), `1 minimization always fails. Moreover, as n grows, the

transition between success and failure becomes increasingly abrupt. Put another

way, for high-dimensional problems, the behavior of `1 minimization is surpris-

ingly predictable: it either almost always succeeds, or almost always fails. The

line demarcating the sharp boundary between success and failure is known as a

phase transition.

y = Axo; x⋆ = argmin
x∈Rn

1

2
∥y −Ax∥22 + λ∥x∥1

x⋆ = xo when measurements ≳ sparsity× log

(
measurements

sparsity

)
Our current nonlinear setting:

Sn0−1

M+

M−
ρ

1/κ

∆

Data structure

. . .

. . .

...
...

...
...

...
...

. . .

Output fθ(x)

N i.i.d. data samples

Width n

Depth L

Architectural resources
Sam Buchanan Deep Representations from the Ground Up June 9, 2023 22 / 74

The Identification Problem: Binary Classification of Two Curves Problem Formulation

The Two Manifold Problem: Resource Tradeoffs

Sn0−1

M+

M−
ρ

1/κ

∆

. . .

. . .

...
...

...
...

...
...

. . .

Output fθ(x)

N i.i.d. data samples

Width n

Depth L

Theory question: How should we set resources (depth L, width n,

samples N) relative to data structure (separation ∆, V; curvature κ;
density ρ) so that gradient descent succeeds?

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 23 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Gradient Descent Training

Objective: Square Loss on Training Data

min
θ

φ(θ) ≡ 1

2

∫

M
(fθ(x)− y(x))2 dµN (x).

Does gradient descent correctly label the manifolds?

One Approach: Geometry (from symmetry!) in parameter space:

Dictionary
Learning

Sparse Blind
Deconvolution

Matrix
Recovery

See [Gilboa, B., Wright ’18], survey [Zhang, Qu, Wright 20] (Lecture 4!)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 24 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Gradient Descent Training

Objective: Square Loss on Training Data

min
θ

φ(θ) ≡ 1

2

∫

M
(fθ(x)− y(x))2 dµN (x).

Does gradient descent correctly label the manifolds?
One Approach: Geometry (from symmetry!) in parameter space:

Dictionary
Learning

Sparse Blind
Deconvolution

Matrix
Recovery

See [Gilboa, B., Wright ’18], survey [Zhang, Qu, Wright 20] (Lecture 4!)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 24 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Gradient Descent Training

Objective: Square Loss on Training Data

min
θ

φ(θ) ≡ 1

2

∫

M
(fθ(x)− y(x))2 dµN (x).

Does gradient descent correctly label the manifolds?
Today’s talk: Dynamics in input-output space:

Dictionary
Learning

Sparse Blind
Deconvolution

Matrix
Recovery

Neural Tangent Kernel

Θ(x,x′) =
〈
∂fθ(x)

∂θ , ∂fθ(x
′)

∂θ

〉

Measures ease of independently adjusting fθ(x), fθ(x
′)

Follows [Jacot et. al. 18], many recent works.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 25 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

Objective: Square Loss on Training Data

min
θ

φ(θ) ≡ 1

2

∫

M
(fθ(x)− y(x))2 dµN (x).

Signed error: ζ(x) = fθ(x)− y(x).

Gradient flow: θ̇t = −∇θφ(θt) = −
∫
M

∂fθ
∂θ

∣∣
θ=θt

(x)ζt(x)dµN (x).

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 26 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

The error evolves according to the NTK:

ζ̇t(x) =
∂fθ(x)

∂θ

∣∣∣
∗

θ=θt
θ̇t

= −∂fθ(x)

∂θ

∣∣∣
∗

θ=θt

∫

M

∂fθ(x
′)

∂θ

∣∣∣
θ=θt

ζt(x
′)dµN (x′)

= −
∫

M

〈
∂fθ(x)

∂θ

∣∣∣
θ=θt

,
∂fθ(x

′)

∂θ

∣∣∣
θ=θt

〉
ζt(x

′)dµN (x′)

= −
∫

M
Θt(x,x

′)ζt(x
′)dµN (x′)

= −Θt[ζt](x).

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 27 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

The error evolves according to the NTK:

ζ̇t(x) =
∂fθ(x)

∂θ

∣∣∣
∗

θ=θt
θ̇t

= −∂fθ(x)

∂θ

∣∣∣
∗

θ=θt

∫

M

∂fθ(x
′)

∂θ

∣∣∣
θ=θt

ζt(x
′)dµN (x′)

= −
∫

M

〈
∂fθ(x)

∂θ

∣∣∣
θ=θt

,
∂fθ(x

′)

∂θ

∣∣∣
θ=θt

〉
ζt(x

′)dµN (x′)

= −
∫

M
Θt(x,x

′)ζt(x
′)dµN (x′)

= −Θt[ζt](x).

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 27 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

The error evolves according to the NTK:

ζ̇t(x) =
∂fθ(x)

∂θ

∣∣∣
∗

θ=θt
θ̇t

= −∂fθ(x)

∂θ

∣∣∣
∗

θ=θt

∫

M

∂fθ(x
′)

∂θ

∣∣∣
θ=θt

ζt(x
′)dµN (x′)

= −
∫

M

〈
∂fθ(x)

∂θ

∣∣∣
θ=θt

,
∂fθ(x

′)

∂θ

∣∣∣
θ=θt

〉
ζt(x

′)dµN (x′)

= −
∫

M
Θt(x,x

′)ζt(x
′)dµN (x′)

= −Θt[ζt](x).

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 27 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

The error evolves according to the NTK:

ζ̇t(x) =
∂fθ(x)

∂θ

∣∣∣
∗

θ=θt
θ̇t

= −∂fθ(x)

∂θ

∣∣∣
∗

θ=θt

∫

M

∂fθ(x
′)

∂θ

∣∣∣
θ=θt

ζt(x
′)dµN (x′)

= −
∫

M

〈
∂fθ(x)

∂θ

∣∣∣
θ=θt

,
∂fθ(x

′)

∂θ

∣∣∣
θ=θt

〉
ζt(x

′)dµN (x′)

= −
∫

M
Θt(x,x

′)ζt(x
′)dµN (x′)

= −Θt[ζt](x).

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 27 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent

The error evolves according to the NTK:

ζ̇t(x) =
∂fθ(x)

∂θ

∣∣∣
∗

θ=θt
θ̇t

= −∂fθ(x)

∂θ

∣∣∣
∗

θ=θt

∫

M

∂fθ(x
′)

∂θ

∣∣∣
θ=θt

ζt(x
′)dµN (x′)

= −
∫

M

〈
∂fθ(x)

∂θ

∣∣∣
θ=θt

,
∂fθ(x

′)

∂θ

∣∣∣
θ=θt

〉
ζt(x

′)dµN (x′)

= −
∫

M
Θt(x,x

′)ζt(x
′)dµN (x′)

= −Θt[ζt](x).

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 27 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Dynamics of Gradient Descent (“NTK Regime”)

When width and number of data samples are large, we have (whp)

sup
t

∥Θt −Θ∥L2→L2 = owidth(1)

throughout training.

=⇒ LTI dynamics
ζ̇t = −Θ[ζt]

=⇒ Fast decay if ζt is aligned with lead eigenvectors of Θ!

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 28 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of Θ are intractable!

Definition. g : M → R is called a certificate if for all x ∈ M

fθ0(x)− y(x)
mean≈
square

∫

M
Θ(x,x′)g(x′) dµ(x′)

and
∫
M (g(x′))2 dµ(x′) is small.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 29 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Implicit Error-NTK Alignment with Certificates
Challenge: For nonlinear M, eigenvectors of Θ are intractable!

Definition. g : M → R is called a certificate if for all x ∈ M

fθ0(x)− y(x)
mean≈
square

∫

M
Θ(x,x′)g(x′) dµ(x′)

and
∫
M (g(x′))2 dµ(x′) is small.

Sn0−1

M+

M−
g

ζ

Function space L2
µN

Error ζ near stable range
of random operator Θ

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 29 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Implicit Error-NTK Alignment with Certificates
Challenge: For nonlinear M, eigenvectors of Θ are intractable!

Definition. g : M → R is called a certificate if for all x ∈ M

fθ0(x)− y(x)
mean≈
square

∫

M
Θ(x,x′)g(x′) dµ(x′)

and
∫
M (g(x′))2 dµ(x′) is small.

Sn0−1

M+

M−
g

ζ

Function space L2
µN

Error ζ near stable range
of random operator Θ

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 29 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of Θ are intractable!

Definition. g : M → R is called a certificate if for all x ∈ M

fθ0(x)− y(x)
mean≈
square

∫

M
Θ(x,x′)g(x′) dµ(x′)

and
∫
M (g(x′))2 dµ(x′) is small.

Lemma. (informal) If a certificate g exists for M, then

∥ζt∥L2
µ
≲ L logL

t
.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 29 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Roles of Width, Depth, and Data

ζ̇t = −Θ[ζt]

Questions:
How do width, depth, and samples affect Θ?
How does Θ depend on the geometry of the data?

Depth L: fitting resource

1
L
Θ(e1,x

′), L = 125

Width n: statistical resource

0 π/2 π

∠(x,x′)

0

Θ
N

T
K

(x
,x
′)
/n

n

10 100 400 1000 Eθ0

[
ΘNTK

]
/n

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 30 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:

1 Θ decays with angle.

2 Faster decay as depth
increases.

=⇒ Set depth based on
geometry!

1
L
Θ(e1,x

′), L = 5

Deeper networks fit more complicated geometries.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 31 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:

1 Θ decays with angle.

2 Faster decay as depth
increases.

=⇒ Set depth based on
geometry!

1
L
Θ(e1,x

′), L = 25

Deeper networks fit more complicated geometries.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 31 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:

1 Θ decays with angle.

2 Faster decay as depth
increases.

=⇒ Set depth based on
geometry!

1
L
Θ(e1,x

′), L = 125

Deeper networks fit more complicated geometries.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 31 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:

1 Θ decays with angle.

2 Faster decay as depth
increases.

=⇒ Set depth based on
geometry!

1
L
Θ(e1,x

′), L = 625

Deeper networks fit more complicated geometries.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 31 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Resource Tradeoffs I: Certificates from Depth

Numerical experiment:

Sn0−1

M+

M−
g

0 0.2 0.4 0.6 0.8 1

10−4

10−3

10−2

10−1

100

101

102

t
lo
g
∣ ∣ ∣g
∣ ∣ M

+
◦x

+
∣ ∣ ∣

L = 2
L = 10
L = 100

0 0.2 0.4 0.6 0.8 1

10−2

10−1

100

101

102

t

lo
g
∣ ∣ ∣g
∣ ∣ M

−
◦x

−
∣ ∣ ∣

L = 2
L = 10
L = 100

Depth as a fitting resource: Larger depth L leads to a sharper kernel Θ
and a smaller certificate g
=⇒ Easier fitting!

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 32 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Resource Tradeoffs II: Width as a Statistical Resource

. . .

. . .

. . .

. . .

Output fθ(x)

Input x ∈ Sn0−1

0 :/2 :
6 (x,x0)

0

#̂
(x

,x
0)
/
n

10 100 400 1000 #̂

n

As width increases, Θ(x,x′) concentrates about Einit weights[Θ(x,x′)]

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 33 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Resource Tradeoffs II: Width as a Statistical Resource

Proposition. Suppose that n > Lpolylog(Ln0). Then (whp)

∣∣∣∣∣Θ(x,x′)− n

2

∑

ℓ

cos(φℓν)

L−1∏

ℓ′=ℓ

(
1− φℓ′ν

π

)∣∣∣∣∣

is small (simultaneously) for all (x,x′) ∈ M×M.

⇒ set width n based on depth L

and implicitly based on κ,∆

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 34 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

Resource Tradeoffs III: Data as a Statistical Resource

Depth L = 50

⇒ Sample complexity N is dictated by kernel “aperture”, which
depends on geometry (κ,∆) via L

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 35 / 74

The Identification Problem: Binary Classification of Two Curves Training Deep Networks with Gradient Descent

End-to-End Generalization Guarantee

Theorem (very informal): For sufficiently regular one-dimensional
manifolds and ReLU networks, when

depth ≥ geometry, width ≥ poly(depth), data ≥ poly(depth),

randomly-initialized small-stepping gradient descent perfectly classifies
the two manifolds!

Upshot:

• We understand the role each resource plays in solving the classification
problem.

• We understand how intrinsic geometric properties of the data drive
these resource requirements.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 36 / 74

Outline
Recap and Outlook

1 Motivating Vignettes for the Nonlinear Manifold Model

2 The Identification Problem: Binary Classification of Two Curves
Problem Formulation

Intrinsic Geometric Properties of Manifold Data
Network Architecture Resources and Training Procedure

Training Deep Networks with Gradient Descent
Resource Tradeoffs

3 The Representation Problem: Manifold Manipulation and Diffusion
(Perfectly) Linearizing One Manifold
Diffusion Models for Distribution Learning

4 CRATE: Identification/Representation of Low-D Structures at Scale
White-Box Architectures for Representation Learning
CRATE: White-Box Transformers from Sparse MCR2

Experimental Results on CRATE

5 Conclusions and A Look Ahead

The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold

Ideal Representation as Autoencoding + Linearization

RD

M

M1

M2

Mj Goal: seeking a low-dimensional representation Z in
Rd (d ≪ D) for the data X on low-dimensional
submanifolds such that:

X ⊂ RD f(x,θ)−−−−−−→ Z ⊂ Rd g(z,η)−−−−−−→ X̂ ≈ X ∈ RD.

We moreover want the representation Z to consist of certain canonical
geometric configurations, say subspaces:

Focus here on M = one manifold (we understand identification!)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 37 / 74

The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold

Standard Approaches to Linearize a Manifold, and Pitfalls
1. Embed training data in Rd by gluing local isometries (manifold learning)

Figure credit: Lim, Oberhauser, and Nanda 2022

+ Provably correct with enough data [Lim et al. 2022], one-one mapping

– No standard generalization to test data without retraining, difficult to
scale to high-dimensional datasets

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 38 / 74

The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold

Standard Approaches to Linearize a Manifold, and Pitfalls
2. Parameterize f, g with deep networks, regularized reconstruction training:

min
f,g

E
X

[
∥X − g (f(X))∥2F

]
+R(f, g)

Encompasses most deep net autoencoders (variational, denoising, VQGAN-type)

+ Truly learns a representation of the distribution, one-one mapping with
proper regularization

– Black-box, no mathematical guarantees in regimes of interest

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 38 / 74

The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold

Manifold Flattening with Second-Order Information

Recent approach to “have it all”: [Psenka, Pai, Raman, Sastry, Ma 2023]

• Ask for flattening, rather than isometry

• Use second-order local information (better efficiency)

• Gluing as a multi-layer, invertible process!

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 39 / 74

The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold

Visualization of Psenka et al.’s Method

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 40 / 74

The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold

Scaling Psenka et al.’s Method to MNIST

D = 784, d ≈ 12

Reconstruction of 9s

Latent interpolation of two 2s

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 41 / 74

The Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold

Limitations of Perfect Manifold Linearization (+ Relaxation)

Still hard to scale this to modern high-dim datasets (ImageNet, LAION-5B)

Practically-motivated solution: give up on one-one representation
=⇒ distribution learning

f(x, ✓)

RD Rd

M

M1

M2

Mj

xi

S1
S2

Sj

zi

Figure 1: Left and Middle: The distribution D of high-dim data x 2 RD is supported on a manifold M and
its classes on low-dim submanifolds Mj , we learn a map f(x, ✓) such that zi = f(xi, ✓) are on a union of
maximally uncorrelated subspaces {Sj}. Right: Cosine similarity between learned features by our method
for the CIFAR10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions Dj are (or can be made). One popular working assumption is that the
distribution of each class has relatively low-dimensional intrinsic structures.9 Hence we may assume
the distribution Dj of each class has a support on a low-dimensional submanifold, say Mj with
dimension dj ⌧ D, and the distribution D of x is supported on the mixture of those submanifolds,
M = [k

j=1Mj , in the high-dimensional ambient space RD, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, ✓) that maps each of
the submanifolds Mj ⇢ RD to a linear subspace Sj ⇢ Rd (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {Sj} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering
or classification tasks (such as object recognition), we consider two samples as equivalent if they
differ by certain class of domain deformations or augmentations T = {⌧}. Hence, we are only
interested in low-dimensional structures that are invariant to such deformations,10 which are known to
have sophisticated geometric and topological structures [WDCB05] and can be difficult to learn in a
principled manner even with CNNs [CW16, CGW19]. There are previous attempts to directly enforce
subspace structures on features learned by a deep network for supervised [LQMS18] or unsupervised
learning [JZL+17, ZJH+18, PFX+17, ZHF18, ZJH+19, ZLY+19, LQMS18]. However, the self-
expressive property of subspaces exploited by [JZL+17] does not enforce all the desired properties
listed above; [LQMS18] uses a nuclear norm based geometric loss to enforce orthogonality between
classes, but does not promote diversity in the learned representations, as we will soon see. Figure 1
right illustrates a representation learned by our method on the CIFAR10 dataset. More details can be
found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at

9There are many reasons why this assumption is plausible: 1. high dimensional data are highly redundant; 2.
data that belong to the same class should be similar and correlated to each other; 3. typically we only care about
equivalent structures of x that are invariant to certain classes of deformation and augmentations.

10So x 2 M iff ⌧(x) 2 M for all ⌧ 2 T .

3

one-one: X ⊂ RD f(x,θ)−−−−−−→ Z ⊂ Rd g(z,η)−−−−−−→ X̂ ≈ X

distributional : X ⊂ RD f(x,θ)−−−−−−→ Z ⊂ Rd g(z,η)−−−−−−→ Law(X̂) ≈ Law(X)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 42 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Spectacular Success of Distribution Learning: Diffusion Models

Diffusion models let us generate new samples of our data X...

...by incrementally transforming Law(X) to Law(Z) = N (0, ID) and back

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 43 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Diffusion Models: Conceptual Idea

Conceptual idea: Transform data into noise, and back!

Outline for understanding diffusion models: (next slides)

• How do we transform data into noise?

• How do we transform noise back into data?

• How do we actually implement it? (finite samples and efficient computation)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 44 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Math of Diffusion Models: Data to Noise (SDEs)

Transform data into noise with the “Ornstein-Uhlenbeck process”:

dxt = −xt dt+
√
2 dwt

x0 = x

This is a “stochastic differential equation”.

???

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 45 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Math of Diffusion Models: Data to Noise (SDEs)
Transform data into noise with the “Ornstein-Uhlenbeck process”:

dxt = −xt dt+
√
2 dwt

x0 = x

This is a “stochastic differential equation”.
Formal intuition: this notation means

xt = −
∫ t

0
xs ds+

√
2

∫ t

0
dws, t ≥ 0.

The last integral is like a sum of gaussians, and
∫ t
0 dws = wt. Thus

xt = e−tx0 +
√
2e−t

∫ t

0
es dws.

Now term two is like a weighted sum of gaussians! In particular

Law(xt) = N
(
e−tx, (1− e−2t)I

)
.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 45 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Closed-Form OU Evolution

For the OU process:

Law(xt) = N
(
e−tx, (1− e−2t)I

)

If x is a random variable, then

Law(xt) = φ1−e−2t︸ ︷︷ ︸
gaussian density

∗ Law(e−tx)

=⇒ xt has a density ρt! Linear convergence to normality!

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 46 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Math of Diffusion Models: Noise to Data

If we stop the process at time T > 0, x←t = xT−t also satisfies a SDE:

dx←t = (x←t + 2∇ log ρT−t(x
←
t)) dt+

√
2 dwt

=⇒ discretize, and generate new samples from data!

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 47 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Math of Diffusion Models: Actually Implementing It
One (big) problem: We don’t know Law(x)!

E.g. Law(x) = {distribution of natural images}...
Sam Buchanan Deep Representations from the Ground Up June 9, 2023 48 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Math of Diffusion Models: Sampling with Score Matching

Idea: sampling follows the process

dx←t = (x←t + 2∇ log ρT−t(x
←
t)) dt+

√
2 dwt (1)

Tweedie’s formula (1956): Let y = e−tx+N (0, (1− e−2t)I). Then

e−tE[x | y] = y + (1− e−2t)∇ log ρt(y).

=⇒ equivalence between estimation (denoising) and score matching!
Many authors ([Hyvärinen 2005], [Vincent 2011], [Song & Ermon 2019], [Ho, Jain, & Abbeel 2020]):
Train a neural network to perform estimation

min
F :RD×R→RD

E
x,g∼N (0,I)

[∥∥∥∥F
(
e−tx+ (1− e−2t)1/2g; t

)
+

1

(1− e−2t)1/2
g

∥∥∥∥
2

2

]

then plug F into Eq. (1) to sample!

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 49 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Conceptual Pipeline for Diffusion Models
• Train score estimation network F with i.i.d. samples xi, gij :

min
F

∑

i,j,t

∥∥∥∥F
(
e−txi + (1− e−2t)1/2gij ; t

)
+

1

(1− e−2t)1/2
gij

∥∥∥∥
2

2

• Sample as though F is the true score:

dx←t = (x←t + 2F (x←t ;T − t)) dt+
√
2 dwt

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 50 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Pitfalls of Diffusion Models
Despite impressive performance and excitement, critical issues remain

1. Good learning of ∇ log ρt ⇐⇒ network F has proper architecture

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 51 / 74

The Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Pitfalls of Diffusion Models
Despite impressive performance and excitement, critical issues remain

2. Black box learned representation (no identification/control)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 51 / 74

Outline
Recap and Outlook

1 Motivating Vignettes for the Nonlinear Manifold Model

2 The Identification Problem: Binary Classification of Two Curves
Problem Formulation

Intrinsic Geometric Properties of Manifold Data
Network Architecture Resources and Training Procedure

Training Deep Networks with Gradient Descent
Resource Tradeoffs

3 The Representation Problem: Manifold Manipulation and Diffusion
(Perfectly) Linearizing One Manifold
Diffusion Models for Distribution Learning

4 CRATE: Identification/Representation of Low-D Structures at Scale
White-Box Architectures for Representation Learning
CRATE: White-Box Transformers from Sparse MCR2

Experimental Results on CRATE

5 Conclusions and A Look Ahead

CRATE: Identification/Representation of Low-D Structures at Scale White-Box Architectures for Representation Learning

Identification/Representation of High-Dim Structured Data

Focus on one half of our goal :

f(x, ✓)

RD Rd

M

M1

M2

Mj

xi

S1
S2

Sj

zi

Figure 1: Left and Middle: The distribution D of high-dim data x 2 RD is supported on a manifold M and
its classes on low-dim submanifolds Mj , we learn a map f(x, ✓) such that zi = f(xi, ✓) are on a union of
maximally uncorrelated subspaces {Sj}. Right: Cosine similarity between learned features by our method
for the CIFAR10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions Dj are (or can be made). One popular working assumption is that the
distribution of each class has relatively low-dimensional intrinsic structures.9 Hence we may assume
the distribution Dj of each class has a support on a low-dimensional submanifold, say Mj with
dimension dj ⌧ D, and the distribution D of x is supported on the mixture of those submanifolds,
M = [k

j=1Mj , in the high-dimensional ambient space RD, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, ✓) that maps each of
the submanifolds Mj ⇢ RD to a linear subspace Sj ⇢ Rd (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {Sj} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering
or classification tasks (such as object recognition), we consider two samples as equivalent if they
differ by certain class of domain deformations or augmentations T = {⌧}. Hence, we are only
interested in low-dimensional structures that are invariant to such deformations,10 which are known to
have sophisticated geometric and topological structures [WDCB05] and can be difficult to learn in a
principled manner even with CNNs [CW16, CGW19]. There are previous attempts to directly enforce
subspace structures on features learned by a deep network for supervised [LQMS18] or unsupervised
learning [JZL+17, ZJH+18, PFX+17, ZHF18, ZJH+19, ZLY+19, LQMS18]. However, the self-
expressive property of subspaces exploited by [JZL+17] does not enforce all the desired properties
listed above; [LQMS18] uses a nuclear norm based geometric loss to enforce orthogonality between
classes, but does not promote diversity in the learned representations, as we will soon see. Figure 1
right illustrates a representation learned by our method on the CIFAR10 dataset. More details can be
found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at

9There are many reasons why this assumption is plausible: 1. high dimensional data are highly redundant; 2.
data that belong to the same class should be similar and correlated to each other; 3. typically we only care about
equivalent structures of x that are invariant to certain classes of deformation and augmentations.

10So x 2 M iff ⌧(x) 2 M for all ⌧ 2 T .

3

Given samples
X = [x1, . . . ,xm] ⊂ ∪k

j=1Mj ,
seek a good representation
Z = [z1, . . . ,zm] ⊂ Rd

through a continuous mapping:
f(x,θ) : x ∈ RD 7→ z ∈ Rd.

So far:

• Resource requirements to identify nonlinear manifolds with deep nets

• Challenges with popular approaches to representation

How to obtain a white-box architecture f that simultaneously
identifies and represents large-scale datasets?

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 52 / 74

CRATE: Identification/Representation of Low-D Structures at Scale White-Box Architectures for Representation Learning

Recap: White-Box Deep Networks
A promising approach: signal models =⇒ deep architectures

• Convolutional sparse coding networks [Papyan et al. 2018]
• Scattering networks [Bruna & Mallat 2013]
• ReduNets [Chan, Yu et al. 2022]

Figure: Left: ReduNet layer. Right: Scattering Network [Bruna & Mallat 2013]
[Wiatowski & Bölcskei 2018] (only 2-3 layers).

Pitfall of existing methods: Challenging to scale to massive datasets
with strong performance

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 53 / 74

CRATE: Identification/Representation of Low-D Structures at Scale White-Box Architectures for Representation Learning

Improved White-Box Scaling by Improved Signal Modeling?

So far: Each sample is drawn from a mixture of manifolds

f(x, ✓)

RD Rd

M

M1

M2

Mj

xi

S1
S2

Sj

zi

Figure 1: Left and Middle: The distribution D of high-dim data x 2 RD is supported on a manifold M and
its classes on low-dim submanifolds Mj , we learn a map f(x, ✓) such that zi = f(xi, ✓) are on a union of
maximally uncorrelated subspaces {Sj}. Right: Cosine similarity between learned features by our method
for the CIFAR10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions Dj are (or can be made). One popular working assumption is that the
distribution of each class has relatively low-dimensional intrinsic structures.9 Hence we may assume
the distribution Dj of each class has a support on a low-dimensional submanifold, say Mj with
dimension dj ⌧ D, and the distribution D of x is supported on the mixture of those submanifolds,
M = [k

j=1Mj , in the high-dimensional ambient space RD, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, ✓) that maps each of
the submanifolds Mj ⇢ RD to a linear subspace Sj ⇢ Rd (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {Sj} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering
or classification tasks (such as object recognition), we consider two samples as equivalent if they
differ by certain class of domain deformations or augmentations T = {⌧}. Hence, we are only
interested in low-dimensional structures that are invariant to such deformations,10 which are known to
have sophisticated geometric and topological structures [WDCB05] and can be difficult to learn in a
principled manner even with CNNs [CW16, CGW19]. There are previous attempts to directly enforce
subspace structures on features learned by a deep network for supervised [LQMS18] or unsupervised
learning [JZL+17, ZJH+18, PFX+17, ZHF18, ZJH+19, ZLY+19, LQMS18]. However, the self-
expressive property of subspaces exploited by [JZL+17] does not enforce all the desired properties
listed above; [LQMS18] uses a nuclear norm based geometric loss to enforce orthogonality between
classes, but does not promote diversity in the learned representations, as we will soon see. Figure 1
right illustrates a representation learned by our method on the CIFAR10 dataset. More details can be
found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at

9There are many reasons why this assumption is plausible: 1. high dimensional data are highly redundant; 2.
data that belong to the same class should be similar and correlated to each other; 3. typically we only care about
equivalent structures of x that are invariant to certain classes of deformation and augmentations.

10So x 2 M iff ⌧(x) 2 M for all ⌧ 2 T .

3

Better? Each sample ⊃ correlated tokens—mixture of manifold marginals!

motion · · ·

t = 0 t = T

t

joint
space-time-value

embedding

crab

eye
pair

transform

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 54 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

CRATE: A White-Box Transformer via Sparse MCR2

A white-box, mathematically interpretable, transformer-like deep network
architecture from iterative unrolling optimization schemes to incrementally
optimize the sparse rate reduction objective:

max
f∈F

EZ

[
∆R(Z;U[K])− ∥Z∥0

]
, Z = f(X).

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

CRATE: White-Box Transformers
via Sparse Rate Reduction
https://arxiv.org/abs/2306.01129 Yaodong Yu (UCB) Druv Pai (UCB)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 55 / 74

https://arxiv.org/abs/2306.01129

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

Sparse MCR2 Objective and Incremental Representation

The sparse rate reduction (Sparse MCR2) objective is defined as

argmax
f∈F

EZ

[
∆R(Z;U[K])− ∥Z∥0

]

= argmin
f∈F

EZ

[
Rc(Z;U[K])︸ ︷︷ ︸

compression

+ ∥Z∥0 −R(Z)︸ ︷︷ ︸
sparsification

]
.

U[K] = (U1, . . . ,UK), Uk ∈ Rd×p are subspaces parameterizing the

marginal distribution of tokens (zi)
N
i=1

RD

M

M1

M2

Mj

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 56 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

Sparse MCR2 Objective and Incremental Representation
The sparse rate reduction (Sparse MCR2) objective is defined as

argmax
f∈F

EZ

[
∆R(Z;U[K])− ∥Z∥0

]

= argmin
f∈F

EZ

[
Rc(Z;U[K])︸ ︷︷ ︸

compression

+ ∥Z∥0 −R(Z)︸ ︷︷ ︸
sparsification

]
.

The global transformation f is realized through local transformations:

f : X
f0

−−→ Z0 → · · · → Zℓ fℓ

−−→ Zℓ+1 → · · · → ZL = Z.

Each f ℓ deforms Zℓ according to its own local signal model U ℓ
[K].

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 56 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

Recap: Compression and Expansion in MCR2

Compression:

Rc(Z;U[K]) =
1

2

K∑

k=1

logdet
(
I +

p

Nϵ2
(U∗kZ)∗(U∗kZ)

)

Expansion:

R(Z) =
1

2

K∑

k=1

logdet

(
I +

d

Nϵ2
Z∗Z

)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 57 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

Sparse MCR2 Objective and Incremental Representation

The sparse rate reduction (Sparse MCR2) objective is defined as

argmax
f∈F

EZ

[
∆R(Z;U[K])− ∥Z∥0

]

= argmin
f∈F

EZ

[
Rc(Z;U[K])︸ ︷︷ ︸

compression

+ ∥Z∥0 −R(Z)︸ ︷︷ ︸
sparsification

]
.

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

How to construct a representation f to incrementally optimize the
compression term and the sparsification term?

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 58 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

Compression in Sparse MCR2

To optimize the compression term Rc(Z;U[K]), we propose to compress

the set of tokens against the subspaces (Uk)
K
k=1 by minimizing the coding

rate via “approximate” gradient descent

(Gradient Descent): Zℓ − κ∇ZR
c(Zℓ;U[K])

≈
(
1− κ · p

Nϵ2

)
Zℓ + κ · p

Nϵ2
· MSSA(Zℓ|U[K]),

where MSSA is defined through an SSA operator as:

SSA(Z|Uk) = (U∗
kZ) softmax((U∗

kZ)∗(U∗
kZ)),

MSSA(Z|U[K]) =
p

Nϵ2
·
[
U1, . . . ,UK

]  SSA(Z|U1)
...

SSA(Z|UK)

 .

No need for separate query-Q, key-K, value-V in transformer
attention block.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 59 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

Compression in Sparse MCR2

To optimize the compression term Rc(Z;U[K]), we propose to compress

the set of tokens against the subspaces (Uk)
K
k=1 by minimizing the coding

rate via “approximate” gradient descent

Zℓ+1/2 = Zℓ + MSSA(Zℓ|U[K]).

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

(a)

Multi-Head Subspace
Self-A�ention

(MSSA)

Add & LayerNorm

Sparse Coding
Proximal Step

(ISTA)

LayerNorm

MSSA Block

SSA (head 1�

SSA (head K)

Aggregate. . .

SSA Block

Autocorrelation
& Softmax

ISTA Block

Activation

Figure 2: One layer of the CRATE architecture. The full architecture is simply a concatenation of such layers,
with some initial tokenizer and final task-specific architecture (i.e., a classification head).

where R(Z) denotes the coding rate of the whole token set, as defined in (7). In addition to
sparsification via the kZk0 term, the expansion term R(Z) in (13) promotes diversity and non-
collapse of the representation, a highly desirable property. However, prior work has struggled to
realize this benefit on large-scale datasets due to poor scalability of the gradient rZR(Z), which
requires a matrix inverse [54].
To simplify things, we therefore take a different approach to trading off between representational
diversity and sparsification: we posit a (complete) incoherent or orthogonal dictionary D 2 Rd⇥d, and
ask to sparsify the intermediate iterates Z`+1/2 with respect to D. That is, Z`+1/2 = DZ`+1 where
Z`+1 is more sparse. The dictionary D is global, i.e., is used to sparsify all tokens simultaneously.
By the incoherence assumption, we have D⇤D ⇡ Id; thus from (7) we have R(Z`+1) ⇡
R(DZ`+1) = R(Z`+1/2). Thus we approximately solve (13) with the following program:

Z`+1 = arg min
Z

kZk0 subject to Z`+1/2 = DZ. (14)

The above sparse representation program is usually solved by relaxing it to an unconstrained convex
program, known as LASSO:

Z`+1 = arg min
Z

h
�kZk1 + kZ`+1/2 � DZk2

F

i
. (15)

In our implementation, motivated by Sun et al. [33] and Zarka et al. [35], we also add a non-negative
constraint to Z`+1,

Z`+1 = arg min
Z�0

h
�kZk1 + kZ`+1/2 � DZk2

F

i
, (16)

which we then incrementally optimize by performing an unrolled proximal gradient descent step,
known as an ISTA step [8], to give the update:

Z`+1 = ReLU(Z`+1/2 + ⌘D⇤(Z`+1/2 � DZ`+1/2) � ⌘�1)
.
= ISTA(Z`+1/2 | D). (17)

In Appendix A.3, we will show one can arrive at a similar operator to the above ISTA-like update for
optimizing (13) by properly linearizing and approximating the rate term R(Z).

2.5 The Overall White-Box CRATE Architecture

By combining the above two steps:

1. (Sections 2.2 and 2.3) Local denoising and compression of tokens within a sample towards a
mixture-of-subspace structure, leading to the multi-head subspace self-attention block – MSSA;

7

(b)

Figure: (a). Visualization of MSSA block; (b). Architecture of MSSA block.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 60 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

Sparsification in Sparse MCR2

To optimize the sparsification term ∥Z∥0 −R(Z), we posit a incoherent or
orthogonal dictionary D ∈ Rd×d and sparsify Zℓ+1/2 with respect to D,
that is

Zℓ+1/2 = DZℓ+1.

By the incoherence assumption, we have D∗D ≈ Id; thus

R(Zℓ+1) ≈ R(DZℓ+1) = R(Zℓ+1/2).

Thus we approximately optimize the sparsification objective with the
following program:

Zℓ+1 = argminZ∥Z∥0 subject to Zℓ+1/2 = DZ.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 61 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

Sparsification in Sparse MCR2

Given the sparse representation program

Zℓ+1 = argminZ∥Z∥0 subject to Zℓ+1/2 = DZ.

we can relax it to an convex program, i.e., positive sparse coding:

Zℓ+1 = argmin
Z≥0

[
λ∥Z∥1 + ∥Zℓ+1/2 −DZ∥2F

]
.

We can incrementally optimize the above objective by performing an
unrolled proximal gradient descent step, known as an ISTA step:

Zℓ+1 = ReLU(Zℓ+1/2 + ηD∗(Zℓ+1/2 −DZℓ+1/2)− ηλ1)

:= ISTA(Zℓ+1/2 |Dℓ).

The ISTA block uses much fewer parameters than transformer MLP
block, and provides more interpretable representations.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 62 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

Sparsification in Sparse MCR2

To optimize the sparsification term ∥Z∥0 −R(Z), we propose to apply an
unrolled proximal gradient descent step, known as an ISTA step:

Zℓ+1 = ReLU(Zℓ+1/2 + ηD∗(Zℓ+1/2 −DZℓ+1/2)− ηλ1)

:= ISTA(Zℓ+1/2 |Dℓ).

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

(a) Multi-Head Subspace
Self-A�ention

(MSSA)

Add & LayerNorm

Sparse Coding
Proximal Step

(ISTA)

LayerNorm

MSSA Block

SSA (head 1�

SSA (head K)

Aggregate. . .

SSA Block

Autocorrelation
& Softmax

ISTA Block

Activation

Figure 2: One layer of the CRATE architecture. The full architecture is simply a concatenation of such layers,
with some initial tokenizer and final task-specific architecture (i.e., a classification head).

where R(Z) denotes the coding rate of the whole token set, as defined in (7). In addition to
sparsification via the kZk0 term, the expansion term R(Z) in (13) promotes diversity and non-
collapse of the representation, a highly desirable property. However, prior work has struggled to
realize this benefit on large-scale datasets due to poor scalability of the gradient rZR(Z), which
requires a matrix inverse [54].
To simplify things, we therefore take a different approach to trading off between representational
diversity and sparsification: we posit a (complete) incoherent or orthogonal dictionary D 2 Rd⇥d, and
ask to sparsify the intermediate iterates Z`+1/2 with respect to D. That is, Z`+1/2 = DZ`+1 where
Z`+1 is more sparse. The dictionary D is global, i.e., is used to sparsify all tokens simultaneously.
By the incoherence assumption, we have D⇤D ⇡ Id; thus from (7) we have R(Z`+1) ⇡
R(DZ`+1) = R(Z`+1/2). Thus we approximately solve (13) with the following program:

Z`+1 = arg min
Z

kZk0 subject to Z`+1/2 = DZ. (14)

The above sparse representation program is usually solved by relaxing it to an unconstrained convex
program, known as LASSO:

Z`+1 = arg min
Z

h
�kZk1 + kZ`+1/2 � DZk2

F

i
. (15)

In our implementation, motivated by Sun et al. [33] and Zarka et al. [35], we also add a non-negative
constraint to Z`+1,

Z`+1 = arg min
Z�0

h
�kZk1 + kZ`+1/2 � DZk2

F

i
, (16)

which we then incrementally optimize by performing an unrolled proximal gradient descent step,
known as an ISTA step [8], to give the update:

Z`+1 = ReLU(Z`+1/2 + ⌘D⇤(Z`+1/2 � DZ`+1/2) � ⌘�1)
.
= ISTA(Z`+1/2 | D). (17)

In Appendix A.3, we will show one can arrive at a similar operator to the above ISTA-like update for
optimizing (13) by properly linearizing and approximating the rate term R(Z).

2.5 The Overall White-Box CRATE Architecture

By combining the above two steps:

1. (Sections 2.2 and 2.3) Local denoising and compression of tokens within a sample towards a
mixture-of-subspace structure, leading to the multi-head subspace self-attention block – MSSA;

7

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

compression sparsi�cation

Multi-Head Subspace
Self-A�ention

(MSSA)

Sparse Coding Proximal Step
(ISTA)

Figure 1: The ‘main loop’ of the CRATE white-box deep network design. After encoding input data X as a
sequence of tokens Z0, CRATE constructs a deep network that transforms the data to a canonical configuration
of low-dimensional subspaces by successive compression against a local model for the distribution, generating
Z`+1/2, and sparsification against a global dictionary, generating Z`+1. Repeatedly stacking these blocks and
training the model parameters via backpropagation yields a powerful and interpretable representation of the data.

architecture is empirically designed and lacks a rigorous mathematical interpretation. In fact, the
output of the attention layer itself has several competing interpretations [67, 74]. As a result, the
statistical and geometric relationship between the data distribution and the final representation learned
by a transformer largely remains a mysterious black box.

Diffusion models and denoising. Diffusion models [22, 34, 41, 43, 44] have recently become
a popular method for learning the data distribution, particularly for generative tasks and natural
image data which are highly structured but notoriously difficult to effectively model [3, 5]. The core
concept of diffusion models is to start with features sampled from a Gaussian noise distribution (or
some other standard template) and iteratively denoise and deform the feature distribution until it
converges to the original data distribution. This process is computationally intractable if modeled in
just one step [60], so it is typically broken into multiple incremental steps. The key to each step is
the so-called score function, or equivalently [13] an estimate for the “optimal denoising function”;
in practice this function is modeled using a generic black-box deep network. Diffusion models
have shown effectiveness at learning and sampling from the data distribution [55, 59, 64]. However,
despite some recent efforts [77], they generally do not establish any clear correspondence between
the initial features and data samples. Hence, diffusion models themselves do not offer a parsimonious
or interpretable representation of the data distribution.

Structure-seeking models and rate reduction. In both of the previous two methods, the represen-
tations were constructed implicitly as a byproduct of solving a downstream task (e.g., classification
or generation/sampling) using deep networks. However, one can also explicitly learn a representation
of the data distribution as a task in and of itself; this is most commonly done by trying to identify and
represent low-dimensional structures in the input data. Classical examples of this paradigm include
model-based approaches such as sparse coding [2, 29] and dictionary learning [17, 21, 47], out of
which grew early attempts at designing and interpreting deep network architectures [18, 32]. More
recent approaches build instead from a model-free perspective, where one learns a representation
through a sufficiently-informative pretext task (such as compressing similar and separating dissimilar
data in contrastive learning [45, 68, 76], or maximizing the information gain in the class of maximal
coding rate reduction methods [6, 46, 54]). Compared to black-box deep learning approaches, both
model-based and model-free representation learning schemes have the advantage of being more
interpretable: they allow users to explicitly design desired properties of the learned representation [46,
54, 62]. Furthermore, they allow users to construct new white-box forward-constructed deep network
architectures [11, 54, 58] by unrolling the optimization strategy for the representation learning
objective, such that each layer of the constructed network implements an iteration of the optimization
algorithm [11, 52, 54]. Unfortunately, in this paradigm, if the desired properties are narrowly defined,
it may be difficult to achieve good practical performance on large real-world datasets.

Our contributions, and outline of this work. In this work, we aim to remedy the limitations
of these existing methods with a more unified framework for designing transformer-like network
architectures that leads to both mathematical interpretability and good practical performance. To
this end, we propose to learn a sequence of incremental mappings to obtain a most compressed and
sparse representation for the input data (or their token sets) that optimizes a unified objective function
known as the sparse rate reduction, specified later in (1). The goal of the mapping is illustrated
in Figure 1. Within this framework, we unify the above three seemingly disparate approaches and

2

(b)

Figure: (a). Visualization of ISTA block; (b). Architecture of ISTA block.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 63 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

One Layer of CRATE

Each layer of CRATE thus incrementally optimizes the compression term
Rc(Z;U[K]) and sparsification term ∥Z∥0 −R(Z),

Zℓ+1 = f ℓ(Zℓ) = ISTA
(
(Id+ MSSA)(Zℓ)︸ ︷︷ ︸

Zℓ+1/2

)
.

More specifically,

Zℓ+1/2 = Zℓ + MSSA(Zℓ |U ℓ
[K]), [Compression step]

Zℓ+1 = ISTA(Zℓ+1/2 |Dℓ), [Sparsification step]

so the ℓ-th layer of the global representation f is

f ℓ : Zℓ Id+MSSA−−−−−−→ Zℓ+1/2 ISTA−−−−→ Zℓ+1.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 64 / 74

CRATE: Identification/Representation of Low-D Structures at Scale CRATE: White-Box Transformers from Sparse MCR2

Overall White-Box CRATE Architecture

Multi-Head Subspace
Self-A�ention

(MSSA)

Add & LayerNorm

Sparse Coding
Proximal Step

(ISTA)

LayerNorm

MSSA Block

SSA (head 1�

SSA (head K)

Aggregate. . .

SSA Block

Autocorrelation
& Softmax

ISTA Block

Activation

Figure 2: One layer of the CRATE architecture. The full architecture is simply a concatenation of such layers,
with some initial tokenizer and final task-specific architecture (i.e., a classification head).

where R(Z) denotes the coding rate of the whole token set, as defined in (7). In addition to
sparsification via the kZk0 term, the expansion term R(Z) in (13) promotes diversity and non-
collapse of the representation, a highly desirable property. However, prior work has struggled to
realize this benefit on large-scale datasets due to poor scalability of the gradient rZR(Z), which
requires a matrix inverse [54].
To simplify things, we therefore take a different approach to trading off between representational
diversity and sparsification: we posit a (complete) incoherent or orthogonal dictionary D 2 Rd⇥d, and
ask to sparsify the intermediate iterates Z`+1/2 with respect to D. That is, Z`+1/2 = DZ`+1 where
Z`+1 is more sparse. The dictionary D is global, i.e., is used to sparsify all tokens simultaneously.
By the incoherence assumption, we have D⇤D ⇡ Id; thus from (7) we have R(Z`+1) ⇡
R(DZ`+1) = R(Z`+1/2). Thus we approximately solve (13) with the following program:

Z`+1 = arg min
Z

kZk0 subject to Z`+1/2 = DZ. (14)

The above sparse representation program is usually solved by relaxing it to an unconstrained convex
program, known as LASSO:

Z`+1 = arg min
Z

h
�kZk1 + kZ`+1/2 � DZk2

F

i
. (15)

In our implementation, motivated by Sun et al. [33] and Zarka et al. [35], we also add a non-negative
constraint to Z`+1,

Z`+1 = arg min
Z�0

h
�kZk1 + kZ`+1/2 � DZk2

F

i
, (16)

which we then incrementally optimize by performing an unrolled proximal gradient descent step,
known as an ISTA step [8], to give the update:

Z`+1 = ReLU(Z`+1/2 + ⌘D⇤(Z`+1/2 � DZ`+1/2) � ⌘�1)
.
= ISTA(Z`+1/2 | D). (17)

In Appendix A.3, we will show one can arrive at a similar operator to the above ISTA-like update for
optimizing (13) by properly linearizing and approximating the rate term R(Z).

2.5 The Overall White-Box CRATE Architecture

By combining the above two steps:

1. (Sections 2.2 and 2.3) Local denoising and compression of tokens within a sample towards a
mixture-of-subspace structure, leading to the multi-head subspace self-attention block – MSSA;

7

• Forward optimization: perform compression and sparsification.

• Learning from data: apply SGD to learn (U ℓ
[K],D

ℓ)Lℓ=1 from data.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 65 / 74

CRATE: Identification/Representation of Low-D Structures at Scale Experimental Results on CRATE

Experiment I: Supervised Learning on ImageNet-1K

Experimental setup: let the CLS token of ZL (i.e., the output token set of
the last layer), and then apply a linear linear to perform supervised learning
on ImageNet-1K using our proposed CRATE architecture.

Table 1: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on ImageNet.
For ImageNet/ImageNetReaL, we directly evaluate the top-1 accuracy. For other datasets, we use models that
are pre-trained on ImageNet as initialization and the evaluate the transfer learning performance via fine-tuning.

Datasets CRATE-T CRATE-S CRATE-B CRATE-L ViT-T ViT-S

parameters 6.09M 13.12M 22.80M 77.64M 5.72M 22.05M

ImageNet 66.7 69.2 70.8 71.3 71.5 72.4
ImageNet ReaL 74.0 76.0 76.5 77.4 78.3 78.4

CIFAR10 95.5 96.0 96.8 97.2 96.6 97.2
CIFAR100 78.9 81.0 82.7 83.6 81.8 83.2
Oxford Flowers-102 84.6 87.1 88.7 88.3 85.1 88.5
Oxford-IIIT-Pets 81.4 84.9 85.3 87.4 88.5 88.6

more structured (i.e., low-rank), which indicates that the set of token representations become closer
to linear subspaces, confirming our mental picture of the geometry of each layer (as in Figure 1).

Visualizing layer-wise subspaces in multi-head self-attention. We now visualize the U `
[K] ma-

trices used in the MSSA block. In Section 2.3, we assumed that U `
[K] were incoherent to capture

different “views” of the set of tokens. In Fig. 7 of Appendix B.2, we first normalize the columns
in each U `

k, then we visualize the [U `
1 , . . . , U `

K]
⇤
[U `

1 , . . . , U `
K] 2 RpK⇥pK . The (i, j)-th block

in each sub-figure corresponds to (U `
i)⇤U `

j for i, j 2 [K] at a particular layer `. We find that the
learned U `

[K] are approximately incoherent, which aligns well with our assumptions. One interesting
observation is that the U `

[K] becomes more incoherent when the layer index ` is larger, which suggests
that the token representations are more separable. This mirrors the situation in other popular deep
networks [57].

3.2 Evalutions of CRATE on Large Real-World Datasets and Tasks

We now study the empirical performance of the proposed networks by measuring their top-1 accuracy
on ImageNet-1K as well as transfer learning performance on several widely used downstream datasets.
We summarize the results in Table 1. As our designed architecture leverages parameter sharing in
both the attention block (MSSA) and the MLP block (ISTA), our CRATE-Base model (22.08 million)
has a similar number of parameters to the ViT-Small (22.05 million).
From Table 1, we find that with a similar number of model parameters, our proposed network
achieves similar ImageNet-1K and transfer learning performance as ViT, despite the simplicity and
interpretability of our design. Moreover, with the same set of training hyperparameters, we observe
promising scaling behavior in CRATE—we consistently improve the performance by scaling up the
model size. For comparison, directly scaling ViT on ImageNet-1K does not always lead to consistent
performance improvement measured by top-1 accuracy [40]. To summarize, we achieve promising
performance on real-world large-scale datasets by directly implementing our principled architecture.

4 Conclusion

In this paper, we propose a new theoretical framework that allows us to derive deep transformer-
like network architectures as incremental optimization schemes to learn compressed and sparse
representation of the input data (or token sets). The so derived and learned deep architectures are not
only fully mathematically interpretable, but also consistent on a layer-by-layer level with their design
objective. Despite being arguably the simplest among all possible designs, these networks already
demonstrate performance on large-scale real-world datasets and tasks close to seasoned transformers.
We believe this work truly helps bridge the gap between theory and practice of deep neural networks
as well as help unify seemingly separate approaches to learning and representing data distributions.
Probably more importantly for practitioners, our framework provides theoretical guidelines to design
and justify new, potentially more powerful, deep architectures for representation learning.

10

• CRATE demonstrates promising performance on the ImageNet-1K
dataset, indicating its potential for further advancement.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 66 / 74

CRATE: Identification/Representation of Low-D Structures at Scale Experimental Results on CRATE

Experiment I: Supervised Learning on ImageNet-1K

Experimental setup: apply the CRATE model pre-trained on ImageNet-1K
as initialization, and then evaluate transfer learning performance via
fine-tuning.

Table 1: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on ImageNet.
For ImageNet/ImageNetReaL, we directly evaluate the top-1 accuracy. For other datasets, we use models that
are pre-trained on ImageNet as initialization and the evaluate the transfer learning performance via fine-tuning.

Datasets CRATE-T CRATE-S CRATE-B CRATE-L ViT-T ViT-S

parameters 6.09M 13.12M 22.80M 77.64M 5.72M 22.05M

ImageNet 66.7 69.2 70.8 71.3 71.5 72.4
ImageNet ReaL 74.0 76.0 76.5 77.4 78.3 78.4

CIFAR10 95.5 96.0 96.8 97.2 96.6 97.2
CIFAR100 78.9 81.0 82.7 83.6 81.8 83.2
Oxford Flowers-102 84.6 87.1 88.7 88.3 85.1 88.5
Oxford-IIIT-Pets 81.4 84.9 85.3 87.4 88.5 88.6

more structured (i.e., low-rank), which indicates that the set of token representations become closer
to linear subspaces, confirming our mental picture of the geometry of each layer (as in Figure 1).

Visualizing layer-wise subspaces in multi-head self-attention. We now visualize the U `
[K] ma-

trices used in the MSSA block. In Section 2.3, we assumed that U `
[K] were incoherent to capture

different “views” of the set of tokens. In Fig. 7 of Appendix B.2, we first normalize the columns
in each U `

k, then we visualize the [U `
1 , . . . , U `

K]
⇤
[U `

1 , . . . , U `
K] 2 RpK⇥pK . The (i, j)-th block

in each sub-figure corresponds to (U `
i)⇤U `

j for i, j 2 [K] at a particular layer `. We find that the
learned U `

[K] are approximately incoherent, which aligns well with our assumptions. One interesting
observation is that the U `

[K] becomes more incoherent when the layer index ` is larger, which suggests
that the token representations are more separable. This mirrors the situation in other popular deep
networks [57].

3.2 Evalutions of CRATE on Large Real-World Datasets and Tasks

We now study the empirical performance of the proposed networks by measuring their top-1 accuracy
on ImageNet-1K as well as transfer learning performance on several widely used downstream datasets.
We summarize the results in Table 1. As our designed architecture leverages parameter sharing in
both the attention block (MSSA) and the MLP block (ISTA), our CRATE-Base model (22.08 million)
has a similar number of parameters to the ViT-Small (22.05 million).
From Table 1, we find that with a similar number of model parameters, our proposed network
achieves similar ImageNet-1K and transfer learning performance as ViT, despite the simplicity and
interpretability of our design. Moreover, with the same set of training hyperparameters, we observe
promising scaling behavior in CRATE—we consistently improve the performance by scaling up the
model size. For comparison, directly scaling ViT on ImageNet-1K does not always lead to consistent
performance improvement measured by top-1 accuracy [40]. To summarize, we achieve promising
performance on real-world large-scale datasets by directly implementing our principled architecture.

4 Conclusion

In this paper, we propose a new theoretical framework that allows us to derive deep transformer-
like network architectures as incremental optimization schemes to learn compressed and sparse
representation of the input data (or token sets). The so derived and learned deep architectures are not
only fully mathematically interpretable, but also consistent on a layer-by-layer level with their design
objective. Despite being arguably the simplest among all possible designs, these networks already
demonstrate performance on large-scale real-world datasets and tasks close to seasoned transformers.
We believe this work truly helps bridge the gap between theory and practice of deep neural networks
as well as help unify seemingly separate approaches to learning and representing data distributions.
Probably more importantly for practitioners, our framework provides theoretical guidelines to design
and justify new, potentially more powerful, deep architectures for representation learning.

10

• CRATE achieves performance close to thoroughly engineered vision
transformers.

• Promising scaling behavior in CRATE.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 67 / 74

CRATE: Identification/Representation of Low-D Structures at Scale Experimental Results on CRATE

Experiment II: Layer-wise Analysis of CRATE

Given a learned CRATE model, we measure the compression term of Zℓ+1/2

(left, Rc(Zℓ+1/2)) and the sparsification term of Zℓ+1 (right, ∥Zℓ+1∥0) on
train/validation samples at each layer.

Figure 3: Left: The compression term Rc(Z`+1/2) of the MSSA outputs at different layers. Right: the sparsity
of the ISTA output block, kZ`+1k0/(d · N), at different layers. (Model: CRATE-Small).

Figure 4: The compression term Rc(Z) (left) and sparsification term kZk0/(d · N) (right) across models
trained with different numbers of epochs. (Model: CRATE-Base).

3.1 In-depth Layer-wise Analysis of CRATE

Do layers of CRATE achieve their design goals? As described in Section 2.3 and Section 2.4, the
MSSA block is designed to optimize the compression term Rc(Z) and the ISTA block to sparsify the
token representations (corresponding to the sparsification term kZk0). To understand whether CRATE

indeed optimizes these terms, for each layer `, we measure (i) the compression term Rc(Z`+1/2)
on the MSSA block outputs Z`+1/2; and (ii) sparsity kZ`+1k0 on the ISTA block outputs Z`+1.
Specifically, we evaluate these two terms by using training/validation samples from ImageNet-1K.
Both terms are evaluated at the per-sample level and averaged over B = 103 samples.
Figure 3 shows the plots of these two key measures at all layers for the learned CRATE-small model.
We find that as the layer index ` increases, both the compression and the sparsification terms improve
in most cases. The increase in the sparsity measure of the last layer is caused by the extra linear
layer for classification.8 These results suggest that CRATE aligns well with the original design goals:
once learned, it essentially learns to gradually compress and sparsity the representations through
its layers. In addition, we also measure the compression and sparsification terms on CRATE models
with different model sizes as well as intermediate model checkpoints and the results are shown by
plots in Figure 5 of Appendix B.2. The observations are very consistent across all different model
sizes—both the compression and sparsification terms improve in most scenarios. Models with more
layers tend to optimize the objectives more effectively, confirming our understanding of each layer’s
roles.
To see the effect of learning, we present the evaluations on CRATE-Small trained with different number
of epochs in Figure 4. When the model is not trained enough (e.g. untrained), the architecture does
not optimize the objectives effectively. However, during training—learning better subspaces U `

[K]

and dictionaries D`—the designed blocks start to optimize the objectives much more effectively.

Visualizing layer-wise token representations. To gain a better understanding of the token represen-
tations of CRATE, we visualize the output of each ISTA block at layer ` in Figure 6 of Appendix B.2.
Specifically, we visualize the Z`+1 via heatmap plots. We observe that the output Z`+1 becomes
more sparse as the layer increases. Moreover, besides the sparsity, we also find that Z`+1 becomes

8Note that the learned sparse (tokens) features need to be mixed in the last layer for predicting the class.
The phenomenon of increase in the sparsity measure at the last layer suggests that each class of objects may be
associated with a number of features, and some of these features are likely to be shared across different classes.

9

• The learned CRATE model indeed performs its design objective – each
layer incrementally optimizes the compression term and the
sparsification term.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 68 / 74

CRATE: Identification/Representation of Low-D Structures at Scale Experimental Results on CRATE

Experiment II: Layer-wise Analysis of CRATE

For comparison, we measure the compression/sparsification term of
randomly initialized CRATE model and models at different epochs.

Figure 3: Left: The compression term Rc(Z`+1/2) of the MSSA outputs at different layers. Right: the sparsity
of the ISTA output block, kZ`+1k0/(d · N), at different layers. (Model: CRATE-Small).

Figure 4: The compression term Rc(Z) (left) and sparsification term kZk0/(d · N) (right) across models
trained with different numbers of epochs. (Model: CRATE-Base).

3.1 In-depth Layer-wise Analysis of CRATE

Do layers of CRATE achieve their design goals? As described in Section 2.3 and Section 2.4, the
MSSA block is designed to optimize the compression term Rc(Z) and the ISTA block to sparsify the
token representations (corresponding to the sparsification term kZk0). To understand whether CRATE

indeed optimizes these terms, for each layer `, we measure (i) the compression term Rc(Z`+1/2)
on the MSSA block outputs Z`+1/2; and (ii) sparsity kZ`+1k0 on the ISTA block outputs Z`+1.
Specifically, we evaluate these two terms by using training/validation samples from ImageNet-1K.
Both terms are evaluated at the per-sample level and averaged over B = 103 samples.
Figure 3 shows the plots of these two key measures at all layers for the learned CRATE-small model.
We find that as the layer index ` increases, both the compression and the sparsification terms improve
in most cases. The increase in the sparsity measure of the last layer is caused by the extra linear
layer for classification.8 These results suggest that CRATE aligns well with the original design goals:
once learned, it essentially learns to gradually compress and sparsity the representations through
its layers. In addition, we also measure the compression and sparsification terms on CRATE models
with different model sizes as well as intermediate model checkpoints and the results are shown by
plots in Figure 5 of Appendix B.2. The observations are very consistent across all different model
sizes—both the compression and sparsification terms improve in most scenarios. Models with more
layers tend to optimize the objectives more effectively, confirming our understanding of each layer’s
roles.
To see the effect of learning, we present the evaluations on CRATE-Small trained with different number
of epochs in Figure 4. When the model is not trained enough (e.g. untrained), the architecture does
not optimize the objectives effectively. However, during training—learning better subspaces U `

[K]

and dictionaries D`—the designed blocks start to optimize the objectives much more effectively.

Visualizing layer-wise token representations. To gain a better understanding of the token represen-
tations of CRATE, we visualize the output of each ISTA block at layer ` in Figure 6 of Appendix B.2.
Specifically, we visualize the Z`+1 via heatmap plots. We observe that the output Z`+1 becomes
more sparse as the layer increases. Moreover, besides the sparsity, we also find that Z`+1 becomes

8Note that the learned sparse (tokens) features need to be mixed in the last layer for predicting the class.
The phenomenon of increase in the sparsity measure at the last layer suggests that each class of objects may be
associated with a number of features, and some of these features are likely to be shared across different classes.

9

• Without learning from data, the random initialized CRATE model does
not perform its design objective effectively.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 69 / 74

CRATE: Identification/Representation of Low-D Structures at Scale Experimental Results on CRATE

Experiment III: Visualize Layer-wise Output of CRATE

We use heatmaps to visualize the output of each layer in CRATE (Zℓ+1).

B.2.2 Additional Layer-wise Visualization
We provide more results of the layer-wise token representation visualization on other samples in
Figure 8, Figure 9, Figure 10, and Figure 11 (Model: CRATE-Base).

Figure 8: Visualizing layer-wise token Z` representations at each layer `. To enhance the visual clarity, we
randomly extract a 50⇥50 sub-matrix from Z` for display purposes. (Sample 1)

Figure 9: Visualizing layer-wise token Z` representations at each layer `. To enhance the visual clarity, we
randomly extract a 50⇥50 sub-matrix from Z` for display purposes. (Sample 2)

31

• We observe clear sparse and low-rank patterns of intermediate outputs
of CRATE.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 70 / 74

CRATE: Identification/Representation of Low-D Structures at Scale Experimental Results on CRATE

Experiment IV: Visualize Learned Subspaces of CRATE

We use heatmaps to visualize the correlations between different subspaces
(Uk)

K
k=1 of each MSSA layer in CRATE, i.e., [U ℓ

1 , . . . ,U
ℓ
K]∗[U ℓ

1 , . . . ,U
ℓ
K].

(a) ` = 1. (b) ` = 2. (c) ` = 3. (d) ` = 4.

(e) ` = 5. (f) ` = 6. (g) ` = 7. (h) ` = 8.

(i) ` = 9. (j) ` = 10. (k) ` = 11. (l) ` = 12.

Figure 7: We visualize the [U `
1 , . . . , U `

K]
⇤
[U `

1 , . . . , U `
K] 2 RpK⇥pK at different layers. The (i, j)-th block in

each sub-figure corresponds to (U `
i)⇤U `

j for i, j 2 [K] at a particular layer `. To enhance the visual clarity, for
each subspace Ui, we randomly pick 4 directions for display purposes. (Model: CRATE-Tiny)

30

• The learned subspaces in MSSA blocks are incoherent.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 71 / 74

Outline
Recap and Outlook

1 Motivating Vignettes for the Nonlinear Manifold Model

2 The Identification Problem: Binary Classification of Two Curves
Problem Formulation

Intrinsic Geometric Properties of Manifold Data
Network Architecture Resources and Training Procedure

Training Deep Networks with Gradient Descent
Resource Tradeoffs

3 The Representation Problem: Manifold Manipulation and Diffusion
(Perfectly) Linearizing One Manifold
Diffusion Models for Distribution Learning

4 CRATE: Identification/Representation of Low-D Structures at Scale
White-Box Architectures for Representation Learning
CRATE: White-Box Transformers from Sparse MCR2

Experimental Results on CRATE

5 Conclusions and A Look Ahead

A Parting Message
We’ve seen today

• What structures in modern data are we learning?

• Resource requirements for identifying nonlinear manifolds

• Manifold representation with manifold learning and diffusion

• Joint identification/representation via white-box transformers

For white-box deep networks, the future is bright!

Multi-Head Subspace
Self-A�ention

(MSSA)

Add & LayerNorm

Sparse Coding
Proximal Step

(ISTA)

LayerNorm

MSSA Block

SSA (head 1�

SSA (head K)

Aggregate. . .

SSA Block

Autocorrelation
& Softmax

ISTA Block

Activation

Figure 2: One layer of the CRATE architecture. The full architecture is simply a concatenation of such layers,
with some initial tokenizer and final task-specific architecture (i.e., a classification head).

where R(Z) denotes the coding rate of the whole token set, as defined in (7). In addition to
sparsification via the kZk0 term, the expansion term R(Z) in (13) promotes diversity and non-
collapse of the representation, a highly desirable property. However, prior work has struggled to
realize this benefit on large-scale datasets due to poor scalability of the gradient rZR(Z), which
requires a matrix inverse [54].
To simplify things, we therefore take a different approach to trading off between representational
diversity and sparsification: we posit a (complete) incoherent or orthogonal dictionary D 2 Rd⇥d, and
ask to sparsify the intermediate iterates Z`+1/2 with respect to D. That is, Z`+1/2 = DZ`+1 where
Z`+1 is more sparse. The dictionary D is global, i.e., is used to sparsify all tokens simultaneously.
By the incoherence assumption, we have D⇤D ⇡ Id; thus from (7) we have R(Z`+1) ⇡
R(DZ`+1) = R(Z`+1/2). Thus we approximately solve (13) with the following program:

Z`+1 = arg min
Z

kZk0 subject to Z`+1/2 = DZ. (14)

The above sparse representation program is usually solved by relaxing it to an unconstrained convex
program, known as LASSO:

Z`+1 = arg min
Z

h
�kZk1 + kZ`+1/2 � DZk2

F

i
. (15)

In our implementation, motivated by Sun et al. [33] and Zarka et al. [35], we also add a non-negative
constraint to Z`+1,

Z`+1 = arg min
Z�0

h
�kZk1 + kZ`+1/2 � DZk2

F

i
, (16)

which we then incrementally optimize by performing an unrolled proximal gradient descent step,
known as an ISTA step [8], to give the update:

Z`+1 = ReLU(Z`+1/2 + ⌘D⇤(Z`+1/2 � DZ`+1/2) � ⌘�1)
.
= ISTA(Z`+1/2 | D). (17)

In Appendix A.3, we will show one can arrive at a similar operator to the above ISTA-like update for
optimizing (13) by properly linearizing and approximating the rate term R(Z).

2.5 The Overall White-Box CRATE Architecture

By combining the above two steps:

1. (Sections 2.2 and 2.3) Local denoising and compression of tokens within a sample towards a
mixture-of-subspace structure, leading to the multi-head subspace self-attention block – MSSA;

7

Thank You! Questions?

Call for Papers

• IEEE JSTSP Special Issue on Seeking Low-dimensionality in
Deep Neural Networks (SLowDNN) Manuscript Due: Nov. 30,
2023.

• Conference on Parsimony and Learning (CPAL) January 2024,
Hongkong, Manuscript Due: Aug. 28, 2023.

Conclusions and A Look Ahead

CEU/PDH Certificates

You can receive an CEU/PDH certificate by completing the course
and pass the quiz. Here is the quiz/evaluation form:

https://bit.ly/ICASSP23_QuizSC2

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 74 / 74

https://bit.ly/ICASSP23_QuizSC2

	Recap and Outlook
	Motivating Vignettes for the Nonlinear Manifold Model
	The Identification Problem: Binary Classification of Two Curves
	Problem Formulation
	Training Deep Networks with Gradient Descent

	The Representation Problem: Manifold Manipulation and Diffusion
	(Perfectly) Linearizing One Manifold
	Diffusion Models for Distribution Learning

	CRATE: Identification/Representation of Low-D Structures at Scale
	White-Box Architectures for Representation Learning
	CRATE: White-Box Transformers from Sparse MCR2
	Experimental Results on CRATE

	Conclusions and A Look Ahead

