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Recap and Outlook

Recap: Sparse Recovery

R
E E > ’“-

Sparse approximation: structured signals, linear measurements

y = Ax,, x,sparse, A € R"™*" random

with convex optimization
%, = argmin _[ly — Az|3 + Al
xcR?

and provable (high probability) guarantees

_ measurements
T, = x, when measurements 2 sparsity x log | ——

sparsity
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N s o
The Deep Learning Era

What role does low-dimensional structure play in the practice of
deep learning? (understand, improve, design...)
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Focus of Today's Lecture: Representation Learning

RP Goal: seeking a low-dimensional representation Z in
R (d < D) for the data X on low-dimensional
submanifolds such that:

X cRrP @0 opd 9B % X e RD.

o L
20
RP Y R?
oL o010
[ Two subproblems: identification and representation.
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Outline

@ Motivating Vignettes for the Nonlinear Manifold Model



Motivating Vignettes for the Nonlinear Manifold Model

Low-Dimensional Structure in Deep Learning Problems

Appropriate mathematical model for data with low-dimensional
structure in the deep learning era: nonlinear manifolds?
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Vignette |: Large-Scale Image Classification

Task: Learn a deep network mapplng images — object classes from data.

— {hedgehog,
hairbrush}

Massive driver of innovation in the last 10 years (ImageNet, ResNet, ViT...)

a Pseudo Labels (EficieptNet-12)

%0 e
NASNET- Ns]”’""

& InceptionV3—e—© ©
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n
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TOP 1 ACCURACY

2012 2014 206 2018 2020 2022
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Motivating Vignettes for the Nonlinear Manifold Model

Nonlinear Variabilities in Natural Images

| 4
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— nonlinear, geometric structure

® 6D for 3D rigid pose; 8D for perspective; 9D for certain illumination
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Limitations of a Purely Data-Driven Approach?

Can fail to learn even simple invariances in the data:
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From [Azulay and Weiss, 2019]
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Motivating Vignettes for the Nonlinear Manifold Model

Vignette |I: Deep Learning in Scientific Discovery
Gravitational Wave Astronomy

One binary black hole merger:

N oo
o 2
S

Frequency (Hz)
o
> B
23

w

030 035
Time (s)

Many mergers o
(varying mass My, Mo): ‘
= low-dim manifold . -

<107

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 9/74



Gravitational Wave Astronomy as Parametric Detection

[— H1 observed
T

T

T

Is observation & = sy + z or = 27

= two (noisy) manifolds!

=] & = E DA
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Gravitational Wave Astronomy as Parametric Detection
- |—N10bser:/ed
Is observation & = sy + z or = 27

—> two (noisy) manifolds!

Classical approach: template matching max(a~,x) > 77

=] & = E DA
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Motivating Vignettes for the Nonlinear Manifold Model

Gravitational Wave Astronomy as Parametric Detection

[— H1 observed ]
T

T T T

Is observation & = s, + z or & = 27
= two (noisy) manifolds!

Classical approach: template matching max(a~,x) > 77
Issues: Optimality? Complexity?
Unknown unknowns? Unknown noise?

Gaussian, convex Sub-Gaussian, nonconvex Laplace, nonconvex
T~
" T~
ey — N S S S
- /\
—— A
L \/
] \/

Ideally: Combine low-dim structure of I" with data-driven for statistical structure...

=] F = = DA
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Motivating Vignettes for the Nonlinear Manifold Model

Takeaways from the Examples

Two key takeaways:
® Data with nonlinear, geometric structure pervade successful
practical applications of deep learning
® Important practical issues (robustness/invariance; resource
efficiency; performance) naturally linked to low-dim structure
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Motivating Vignettes for the Nonlinear Manifold Model

Takeaways from the Examples

Two key takeaways:

® Data with nonlinear, geometric structure pervade successful
practical applications of deep learning

® Important practical issues (robustness/invariance; resource
efficiency; performance) naturally linked to low-dim structure

Next: Understanding mathematically when and why deep learning
successfully classifies data with nonlinear geometric structure.

Hedgehogs

IC4
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Outline

@ The Identification Problem: Binary Classification of Two Curves

Problem Formulation
Intrinsic Geometric Properties of Manifold Data
Network Architecture Resources and Training Procedure
Training Deep Networks with Gradient Descent
Resource Tradeoffs



The Identification Problem: Binary Classification of Two Curves Problem Formulation

A Mathematical Model Problem for Deep Learning +
Low-Dimensional Structure

Formalizing data with nonlinear geometric structure: Low-dimensional
Riemannian submanifolds of high-dimensional space!

Hedgehogs

The multiple manifold problem: K-way classification of data on
d-dimensional Riemannian manifolds in S™0~1.
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Problem Formulation
The Two Manifold Problem

S’flo—l

Problem. Given N i.i.d. labeled samples (xi,y(x1)), ...,
(zn,y(xN)) from M = M UM_, use gradient descent to train a
deep network fg that perfectly labels the manifolds:

sign (fo(x)) = y(x) forall x e M.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 13 /74



Rl
The Two Manifold Problem: Key Aspects

Problem. Given N i.i.d. labeled sam-
ples (z1,y(21)), - ... (@, y(zN)) from
M = My UM_, use gradient descent to
train a deep network fg that perfectly labels
the manifolds:

sign (fo(z)) = y(z) Va € M.

® Binary classification with a deep neural network
® High-dimensional data with (unknown!) low-dimensional structure

® Statistical structure, and asking for “strong” generalization

[ We will focus on the case of one-dimensional manifolds (curves)
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The Identification Problem: Binary Classification of Two Curves Problem Formulation

What Can We Hope to Understand Here?

Our “barometer”: compressed sensing.

g ZE > -

.1
y=Az,;  x, =agmin S|y — Az + Az
Q:ER" 2

. measurements
T, = &, when measurements 2 sparsity X log | ——

sparsity

Questions:
What are our ‘measurement resources’ in the two manifold problem?
What are intrinsic structural properties of nonlinear manifold data?
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The Identification Problem: Binary Classification of Two Curves Problem Formulation

The Two Manifold Problem: Geometric Parameters

Problem. Given N i.i.d. labeled sam-
-m, ples (1, y(®1)), ..., (zn,; y(zN)) from
- M M = My UM_, use gradient descent to
» train a deep network fg that perfectly labels
-1/n the manifolds:
- A sign (fg(x)) = y(x) Ve € M.

A set of ‘sufficient’ intrinsic problem difficulty parameters:
e Curvature k;
® Separation A;
® Separation ‘frequency’ x.
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The Identification Problem: Binary Classification of Two Curves Problem Formulation

Intrinsic Structural Properties |: Separation

Intuitively: How close are the class manifolds?

Mathematically:

A = inf {dextrinsic (fB, ZC/)}

x,x' €
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e Em e
Intrinsic Structural Properties Il: Curvature

Intuitively: Local deviation from flatness of the manifold.

Mathematically:
()
zEM I3
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The Identification Problem: Binary Classification of Two Curves Problem Formulation

Intrinsic Structural Properties IlI: &B-Number

Intuitively: How much do the class manifolds loop back on themselves?

Mathematically:

BM) = sup Ny ({x/

reM

dmtnnsm( ) > T1 1
)
(/extrmsm( ) < T2 V1+ ,%2
Here, Na((T,0) is the covering number of T'C M by ¢ balls in dintrinsic-
T EE 17



The Identification Problem: Binary Classification of Two Curves Problem Formulation

The Two Manifold Problem: Geometric Parameters

Problem. Given N i.i.d. labeled sam-
-m, ples (1, y(®1)), ..., (zn,; y(zN)) from
- M M = My UM_, use gradient descent to
» train a deep network fg that perfectly labels
-1/n the manifolds:
- A sign (fg(x)) = y(x) Ve € M.

A set of ‘sufficient’ intrinsic problem difficulty parameters:
e Curvature k;
® Separation A;
® Separation ‘frequency’ x.
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The Identification Problem: Binary Classification of Two Curves Problem Formulation

Network Architecture and Training Procedure

Output fo(x)

® Fully connected with RelLUs
® Gaussian initialization 6

® Trained with N i.i.d. samples
from measure p of density p
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The Identification Problem: Binary Classification of Two Curves Problem Formulation

Network Architecture and Training Procedure

Output fo(x)

® Fully connected with RelLUs
® Gaussian initialization 6 Dep

® Trained with NV i.i.d. samples
from measure p of density p

1

Input = € S"~
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The Identification Problem: Binary Classification of Two Curves Problem Formulation

Resource Tradeoffs: From Linear to Nonlinear
The “linear” case (compressed sensing):

£ bal B,
4 é % %

.1
y=Az,; @ —agmin £ |y — Azl + Az
TERM 2

measurements>

x, = &, when measurements 2 sparsity X log ( :
sparsity

Our current nonlinear setting:

Output fp(z)

Depth L 1

Sm.fl

N i.i.d. data samples

Data structure )
Architectural resources
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Problem Formulation
The Two Manifold Problem: Resource Tradeoffs

Output fo(x)

Dep

Width n

N i.i.d. data samples

Theory question: How should we set resources (depth L, width 7,
samples V) relative to data structure (separation A, &B; curvature x;
density p) so that gradient descent succeeds?
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d
Gradient Descent Training

Objective: Square Loss on Training Data

1

min ()= 5 [ (fo(a) ~y(@)? dux(a).

Does gradient descent correctly label the manifolds?
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d
Gradient Descent Training

Objective: Square Loss on Training Data

min ()= 5 [ (fo(a) ~y(@)? dux(a).

Does gradient descent correctly label the manifolds?
One Approach: Geometry (from symmetry!) in parameter space:

2 O

Dictionary Sparse Blind Matrix
Learning Deconvolution Recovery

See [Gilboa, B., Wright '18], survey [Zhang, Qu, Wright 20] (Lecture 4!)
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Gradient Descent Training

Objective: Square Loss on Training Data

1

min 0(0) = =

/ (fol@) — y(®))? dun ().
M

Does gradient descent correctly label the manifolds?
Today’s talk: Dynamics in input-output space:

Neural Tangent Kernel
O, a') = (2gg), o))

Measures ease of independently adjusting fo(x), fo(x')

Follows [Jacot et. al. 18], many recent works.
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Dynamics of Gradient Descent

Objective: Square Loss on Training Data

6

wine(®) =3 [ (fol@) ~ (@) dux(a).

Signed error: ((xz) = fo(x) — y(x).
Gradient flow: 8, = —V¢(6,) = — M %lezet(m)g(m)dm\r(m).
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Dynamics of Gradient Descent
The error evolves according to the NTK:
Glz) =

afg(w) *
00

0=06;

=] & = E DA
Sam Buchanan Deep Representations from the Ground Up
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Dynamics of Gradient Descent

The error evolves according to the NTK:

Ct(a:) - afgéw) Zzetét
6f9(113) * af@(x/) / /
T 00 lo—s, ™ “00 e:eft(“’ )dun (x')
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Dynamics of Gradient Descent

The error evolves according to the NTK:

Ct(a:) - afgéw) Zzetét
. 8f9(:13) * af@(x/) / /
= 7700 loe, ™ “00 9:(%@(3c )dun (x')

_ _/ <5f9(e’ﬂ)‘ dfe(')
B M\ 00 le=e, 00

><t(m'>duN<w/>

0=06;
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Dynamics of Gradient Descent

The error evolves according to the NTK:

Ct(a:) - afgéw) Zzetét
. 8f9(:13) * af@(x/) / /
= 7700 loe, ™ “00 9:(%@(3c )dun (x')

_ _/ <5f9(e’ﬂ)‘ dfe(')
B M\ 00 le=e, 00

><t(m'>duN<w/>

0=06;
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Dynamics of Gradient Descent

The error evolves according to the NTK:

iw) = 22D g,
= 8f9(:1}) ¥ afg(.’l:/) / /
= 700 loe, " 00 G:OtCt(w Ydpn (')

_ _/ <5f9(e’ﬂ)‘ dfe(')
B M\ 00 le=e, 00

- / O(w, ') (x")dun (')
M
= —6[G](z).

><t(w'>duN<w/>

0=06;
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Training Deep Networks with Gradient Descent
Dynamics of Gradient Descent (“NTK Regime”)

When width and number of data samples are large, we have (whp)
sup [©: — O 2,12 = 0wiaen(1)

throughout training.

= LTI dynamics

G =—0[¢]

= Fast decay if (; is aligned with lead eigenvectors of ©!
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Training Deep Networks with Gradient Descent
Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of ® are intractable!

e

Definition. g : M — R is called a certificate if for all x € M

foo (@) — ol / O, #')g(a’) du(x')

square

and [, (g x'))? dp(ax') is small.
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Training Deep Networks with Gradient Descent
Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of © are intractable!

Definition. g : M — R is called a certificate if for all x € M

mean

foo(x) —y(x) ~

square

/ o, x')g(a’) du(x')
M

and [, (g(x'))? dp(a’) is small.
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Training Deep Networks with Gradient Descent
Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of © are intractable!

Definition. g : M — R is called a certificate if for all x € M

mean

foo(x) —y(x) ~

square

/ o, x')g(a’) du(x')
M

and [, (g(x'))? dp(a’) is small.

: 2
Function space L; .

Error ¢ near stable range
of random operator ©
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Implicit Error-NTK Alignment with Certificates

Challenge: For nonlinear M, eigenvectors of © are intractable!

Definition. g : M — R is called a certificate if for all x € M

foo () — u( / o, 2')g(x') dpu(ar')

square

and [, (g x'))? dp(a') is small.

Lemma. (informal) If a certificate g exists for M, then

LlogL
<
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Training Deep Networks with Gradient Descent
Roles of Width, Depth, and Data

G = —0O[¢]

Questions:
How do width, depth, and samples affect ®7?
How does ©® depend on the geometry of the data?

Depth L: fitting resource Width n: statistical resource

= 10 === 100 =400 = 1000 —— £, [0*¥] /n

%@)(el,m'),L: 125 0

Lz, )

Sam Buchanan Deep Representations from the Ground Up June 9, 2023
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:
@ O decays with angle.

® Faster decay as depth
increases.

= Set depth based on
geometry!

£O(e1, '), L=5

[ Deeper networks fit more complicated geometries.
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:
@ O decays with angle.
® Faster decay as depth 0
increases.

— Set depth based on
geometry!

%@(el, x’'), L =25

[ Deeper networks fit more complicated geometries.
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:
@ O decays with angle.
® Faster decay as depth 0
increases.

— Set depth based on
geometry!

+o(er, '), L =125

[ Deeper networks fit more complicated geometries.
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Resource Tradeoffs I: Depth as a Fitting Resource

Key insights:
@ O decays with angle.
® Faster decay as depth ’
increases.

— Set depth based on
geometry!

+o(er,a'), L =625

[ Deeper networks fit more complicated geometries.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 31/74



The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Resource Tradeoffs I: Certificates from Depth

Numerical experiment:

Depth as a fitting resource: Larger depth L leads to a sharper kernel ©
and a smaller certificate g
— Easier fitting!
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Resource Tradeoffs IlI: Width as a Statistical Resource

n
— 10 — 100 —400 — 1000 — &)

O(x,a')/n

Input « € S"o—!

As width increases, ©(x, z’) concentrates about Einit weights[© (€, T’)]

Sam Buchanan
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Resource Tradeoffs IlI: Width as a Statistical Resource

Proposition. Suppose that n > Lpolylog(Lng). Then (whp)

n = of'v
‘@(m,az') —3 Zcos(goey) H ( - T) ‘

L 0=t

is small (simultaneously) for all (z,z') € M x M.

= set width n based on depth L

and implicitly based on k, A
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

Resource Tradeoffs Ill: Data as a Statistical Resource

Co (z)
) ()
<2N (w

My :vl :1:2 T1T2TITL4T5T6

Depth L = 50

= Sample complexity N is dictated by kernel “aperture”, which
depends on geometry (k,A) via L
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The Identification Problem: Binary Classification of Two Curves BRFEIIT-A DM\ ERIH NS e [Nl DI 1d

End-to-End Generalization Guarantee

Theorem (very informal): For sufficiently regular one-dimensional
manifolds and ReLU networks, when

depth > geometry, width > poly(depth), data > poly(depth),

randomly-initialized small-stepping gradient descent perfectly classifies
the two manifolds!

Upshot:

® \We understand the role each resource plays in solving the classification
problem.

® \We understand how intrinsic geometric properties of the data drive
these resource requirements.
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Outline

© The Representation Problem: Manifold Manipulation and Diffusion
(Perfectly) Linearizing One Manifold
Diffusion Models for Distribution Learning



he Representation Problem: Manifold Manipulation and Diffusion (=) NV -0 N VET Tie] [

|deal Representation as Autoencoding + Linearization

Goal: seeking a low-dimensional representation Z in
R? (d < D) for the data X on low-dimensional
submanifolds such that:

RP

X cRP 1@9 7 opd 9= L x x cRD.

We moreover want the representation Z to consist of certain canonical
geometric configurations, say subspaces:

><
R

- - D e
Focus here on M = one manifold (we understand identification!)
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he Representation Problem: Manifold Manipulation and Diffusion (=) NV -0 N VET Tie] [

Standard Approaches to Linearize a Manifold, and Pitfalls

1. Embed training data in R? by gluing local isometries (manifold learning)

Figure credit: Lim, Oberhauser, and Nanda 2022

+ Provably correct with enough data [Lim et al. 2022], one-one mapping

— No standard generalization to test data without retraining, difficult to
scale to high-dimensional datasets
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he Representation Problem: Manifold Manipulation and Diffusion (=) NV -0 N VET Tie] [

Standard Approaches to Linearize a Manifold, and Pitfalls

2. Parameterize f, g with deep networks, regularized reconstruction training:

min B[ X - g (F(X)I}] + R(f.9)

1.9

Encompasses most deep net autoencoders (variational, denoising, VQGAN-type)

+ Truly learns a representation of the distribution, one-one mapping with
proper regularization

— Black-box, no mathematical guarantees in regimes of interest
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he Representation Problem: Manifold Manipulation and Diffusion (=) NV -0 N VET Tie] [

Manifold Flattening with Second-Order Information

Recent approach to “have it all”: [Psenka, Pai, Raman, Sastry, Ma 2023]
e Ask for flattening, rather than isometry
® Use second-order local information (better efficiency)

® Gluing as a multi-layer, invertible process!
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Visualization of Psenka et al.'s Method

figures/flatnet-music-video.mp4

=] & = E DA
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he Representation Problem: Manifold Manipulation and Diffusion (Perfectly) Linearizing One Manifold

Scaling Psenka et al.'s Method to MNIST

D =784, d~12
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he Representation Problem: Manifold Manipulation and Diffusion (=) NV -0 N VET Tie] [

Limitations of Perfect Manifold Linearization (+ Relaxation)

Still hard to scale this to modern high-dim datasets (ImageNet, LAION-5B)

Practically-motivated solution: give up on one-one representation
= distribution learning

RD

/]
one-one: X C RP M)

distributional: X c RP M)

9(z,m) X~ X

Z C R?

Z c R 2 Law(X) ~ Law(X)
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he Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Spectacular Success of Distribution Learning: Diffusion Models

Diffusion models let us generate new samples of our data X ...

figures/diffusion-iterations-lastlong.m

...by incrementally transforming Law(X) to Law(Z) = N(0, Ip) and back
June 9, 2023 43/74




25 0 D P 2 T
Diffusion Models: Conceptual Idea

Conceptual idea: Transform data into noise, and back!

figures/curve-diffusion-sin.r figures/curve-diffusion-circl

Outline for understanding diffusion models: (next slides)
® How do we transform data into noise?
® How do we transform noise back into data?

® How do we actually implement it? (finite samples and efficient computation)

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 44 /74





Diffusion Models for Distribution Learning
Math of Diffusion Models: Data to Noise (SDEs)

Transform data into noise with the “Ornstein-Uhlenbeck process”:

d:l’,‘t = — Tt dt + \/idwt

oy — =T

This is a “stochastic differential equation”.

77
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Diffusion Models for Distribution Learning
Math of Diffusion Models: Data to Noise (SDEs)

Transform data into noise with the “Ornstein-Uhlenbeck process”:

d:l’,‘t = — Tt dt + \/idwt
oy ==

This is a “stochastic differential equation”.
Formal intuition: this notation means

t t
mt:—/ azsds—&-\@/ dws, t>0.
0 0
The last integral is like a sum of gaussians, and fot dws; = wy. Thus

t
x, = ety + \/ie_t/ e* dws.
0

Now term two is like a weighted sum of gaussians! In particular

Law(z) = N (e 'z, (1 — e *)I).
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he Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Closed-Form OU Evolution
For the OU process:

Law(z;) = N (e 'z, (1 — e *)I)

If  is a random variable, then

Law(xi) = @1 -2 * Law(e 'x)
~—
gaussian density
figures/curve-diffusion-sin.r figures/curve-diffusion-circl

— x; has a density p;! Linear convergence to normality!
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Diffusion Models for Distribution Learning
Math of Diffusion Models: Noise to Data

If we stop the process at time 1" > 0, &;~ = x7_; also satisfies a SDE:

dei = (27 +2Vilog pr_i(x)) dt + V2 dw;,

figures/curve-diffusion-sin- figures/curve-diffusion-sin-1

— discretize, and generate new samples from data!
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he Representation Problem: Manifold Manipulation and Diffusion Diffusion Models for Distribution Learning

Math of Diffusion Models: Actually Implementing It
One (big) problem: We don’t know Law(x)!

figures/diffusion-iterations-lastlong.m

E.g. Law(a) = {distribution of natural images}...
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Diffusion Models for Distribution Learning
Math of Diffusion Models: Sampling with Score Matching

Idea: sampling follows the process
dei = (zf +2Vlog pr_¢(xf)) dt + V2 dw, (1)
Tweedie’s formula (1956): Let y = etz + N(0, (1 — e ?)I). Then
e 'Elz |y] =y + (1 - e ) Viog pi(y).

— equivalence between estimation (denoising) and score matching!
Ma ny authors ([Hyvérinen 2005], [Vincent 2011], [Song & Ermon 2019], [Ho, Jain, & Abbeel 2020]):
Train a neural network to perform estimation
2
1
2
June 9, 2023 49 /74

min E —(1 — 6*2'5)1/29

F:RP xR—RP 2,g~N(0,I)

HF (e_ta: + (1 —e 21 /2g; t) +

then plug F into Eq. (1) to sample!



Diffusion Models for Distribution Learning
Conceptual Pipeline for Diffusion Models

® Train score estimation network F’ with i.i.d. samples x;, g;;:

- 1
(e xi+(1—e 2t)1/2gij§t) + mgij
2

® Sample as though F' is the true score:

dei = (xF +2F (x ;T —t)) dt + V2 dw,

figures/curve-diffusion-circl figures/curve-diffusion-circl
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Diffusion Models for Distribution Learning
Pitfalls of Diffusion Models

Despite impressive performance and excitement, critical issues remain

figures/diffusion-iterations-lastlong.m

1. Good learning of Vlogp; <= network F' has proper architecture
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Diffusion Models for Distribution Learning
Pitfalls of Diffusion Models

Despite impressive performance and excitement, critical issues remain

figures/diffusion-iterations-lastlong.m

2. Black box learned representation (no identification/control)
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CRATE: Identification/Representation of Low-D Structures at Scale

White-Box Architectures for Representation Learning

|dentification/Representation of High-Dim Structured Data

Focus on one half of our goal:

Given samples

D
X =[zy,..., 2] C UL M;, ¥
seek a good representation W
Z =[z1,...,2zm) C RY ’

through a continuous mapping:
f(x,0):xcRP s z € R
So far:

® Resource requirements to identify nonlinear manifolds with deep nets

® Challenges with popular approaches to representation

How to obtain a white-box architecture f that simultaneously
identifies and represents large-scale datasets?
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White-Box Architectures for Representation Learning

CRATE: Identification/Representation of Low-D Structures at Scale

Recap: White-Box Deep Networks

A promising approach: signal models = deep architectures
¢ Convolutional sparse coding networks [Papyan et al. 2018]
® Scattering networks [Bruna & Mallat 2013]
¢ ReduNets [Chan, Yu et al. 2022]

2t
D I1F 0]+ ¥y |+ oo |

1 * by o e

\/

I1f =¥y [* 5|

ife]--[a] =] [
P l ,,,,,,,, ! l” 117+ Yyl 5 By + ¥y \/ \// 1 2T o+ sy
(o s o—+ A—J R \V ool

: 17+l ‘Hm \ // Ir u) I,

’ I’w(fr;;

tring network architecture based on wavelt filers and the modulus non-incar . The clements of the feature vector w () in (1) are indicaied

rRtr
Figure: Left: ReduNet layer. Right: Scattering Network [Bruna & Mallat 2013]

[Wiatowski & Bolcskei 2018] (only 2-3 layers).

Pitfall of existing methods: Challenging to scale to massive datasets
with strong performance
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Improved White-Box Scaling by Improved Signal Modeling?

So far: Each sample is drawn from a mixture of manifolds

RP R

S-
S1 2

Better? Each sample O correlated tokens—mixture of manifold marginals!

e

‘embedded features on o structured representations transform
nonlinear submanifolds .+ linear subspaces) ;
5 « p: i QV ’ crab
segmentation & Jeyé,
4 M \ oint :
o

ipxce time-value '//

embedding
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CRATE: Identification/Representation of Low-D Structures at Scale

CRATE: White-Box Transformers from Sparse MCR?

CRATE: A White-Box Transformer via Sparse MCR?
A white-box, mathematically interpretable, transformer-like deep network

architecture from iterative unrolling optimization schemes to incrementally
optimize the sparse rate reduction objective:

I}lea]}__(Ez [AR(Z:Uik) — 1 Zllo],  Z = f(X).

compression sparsification
Zt Zz gt P Zt+ ‘
i L?é
CRATE: White-Box Transformers ﬁ‘
via Sparse Rate Reduction - ‘Ee;fl {
https://arxiv.org/abs/2306.01129

Yaodong Yu (UCB)  Druv Pai (UCB)
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CRATE: Identification/Representation of Low-D Structures at Scale

CRATE: White-Box Transformers from Sparse MCR?

Sparse MCR? Objective and Incremental Representation

The sparse rate reduction (Sparse MCR?) objective is defined as

argmax Ez [AR(Z;U[K]) - ”Z”O]
feF

— argminE [H"’(Z: Ui) + 120 — H(Z)].
feF

compression sparsification

Uik = (Ui,...,Uk), Uy € RI*P are subspaces parameterizing the
marginal distribution of tokens (z;)X

Sam Buchanan

Deep Representations from the Ground Up June 9, 2023 56 /74



(@ SN LT T L e e R A A DR T VN I CRATE: White-Box Transformers from Sparse MCR?

Sparse MCR? Objective and Incremental Representation
The sparse rate reduction (Sparse MCR?) objective is defined as

argmaxEz [AR(Z;Uk)) — || Z]o]
fer

—argmm]Ez[ (Z;Ugy) + |1 Z)|o— R Z)]
feF

compression sparsification

The global transformation f is realized through local transformations:
0 2
fxtoz0 szt Loz Lzl 7.

Each f¢ deforms Z¢ according to its own local signal model U[‘}(].

Multi-Head Subspace s S —
Self-Attention _ 5 parse (ngl' Ar)oxlma ep
(MssA)

compression sparsification
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Recap: Compression and Expansion in MCR?
Compression:

p * * *
RY(Z;Upq) = § jlogdet( =i 2) (UkZ)>
Expansion:

1 & d
=3 ; logdet (I + Wz*z)

i, vol(Z')
vol(Z)
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(@ SN LT T L e e R A A DR T VN I CRATE: White-Box Transformers from Sparse MCR?

Sparse MCR? Objective and Incremental Representation

The sparse rate reduction (Sparse MCR?) objective is defined as

argmaxEz [AR(Z;Uik)) — |1 Z||o]
feF

— argminEy [H"(zz Ui) + 120 — H(Z)].

fer ~—
compression sparsification
Multi-Head Subspace .
Self-Attention Sparse Cod(l;\gTPAr;Jxlmal Step
(Mssa)
compression sparsification
""""""""""""""""""""""" Z1/2 T ; zth|

How to construct a representation f to incrementally optimize the
compression term and the sparsification term?
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Compression in Sparse MCR?

To optimize the compression term 1°(Z: U ), we propose to compress
the set of tokens against the subspaces (U)X | by minimizing the coding
rate via “approximate”’ gradient descent

(Gradient Descent):  Z* — kV zR%(Z"; Ujy)

p
~ (1 — KN 2) Z' + k- = -MSSA(Z*|Uk)),
where MSSA is defined through an SSA operator as:

SSA(Z|Uy) = (Uy; Z) softmax((Uy; Z)* (U}, Z)),

SSA(Z|U7)
MSSA(Z|Ug)) = N — - [U1,...,Uk] :

SSA(Z|Ux)

No need for separate query-Q, key- K, value-V in transformer
attention block.

Sam Buchanan Deep Representations from the Ground Up
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CRATE: Identification/Representation of Low-D Structures at Scale

CRATE: White-Box Transformers from Sparse MCR?

Compression in Sparse MCR?

To optimize the compression term /2°(Z: U ), we propose to compress
the set of tokens against the subspaces (U)X | by minimizing the coding
rate via “approximate” gradient descent

ZV? = 7' L ussA(Z! |Uk)).

Multi-Head Subspace

:
Se\f(—Atter;tlon
(MSSA)
- ® .
compression ssa Block
Lt £+1/2 Seif-Attention A <2 e
|z Z41/2 o e B

: o cml
o 2 o N H
777777777 oo oo MSSA Block |

() (b)

Figure: (a). Visualization of MSSA block; (b). Architecture of MSSA block.

Sam Buchanan Deep Representations from the Ground Up
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CRATE: Identification/Representation of Low-D Structures at Scale

CRATE: White-Box Transformers from Sparse MCR?

Sparsification in Sparse MCR?

To optimize the sparsification term || Z ||, — [7(Z), we posit a incoherent or

orthogonal dictionary D € R%*? and sparsify Z¢*1/2 with respect to D,
that is

Zf-i—l/? — sz-i-l.
By the incoherence assumption, we have D*D = I;; thus
R(ZZ—H) ~ R(DZZ—H) — R(ZZ+1/2).

Thus we approximately optimize the sparsification objective with the
following program:

Z% = argming||Z||o  subject to Z“FY2 =D2Z.
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CRATE: White-Box Transformers from Sparse MCR?
Sparsification in Sparse MCR?
Given the sparse representation program
Z* = argming,||Z|o subject to Z‘T'/? = D2Z.

we can relax it to an convex program, i.e., positive sparse coding:

Z" = argmin (M| Z|, + || 24712 - DZ||%}
Z>0

We can incrementally optimize the above objective by performing an
unrolled proximal gradient descent step, known as an ISTA step:
Z" = ReLU(Z""/2 + nD*(Z2"T/? — DZ''/?) — pA1)
.= ISTA(Z'T'/? | DY).

The ISTA block uses much fewer parameters than transformer MLP
block, and provides more interpretable representations.

Sam Buchanan Deep Representations from the Ground Up June 9, 2023 62 /74



(@ SN LT T L e e R A A DR T VN I CRATE: White-Box Transformers from Sparse MCR?

Sparsification in Sparse MCR?

To optimize the sparsification term | Z |, — 2(Z), we propose to apply an
unrolled proximal gradient descent step, known as an ISTA step:

Z"' = ReLU(Z'*Y/2 4 nD*(2"71/? — DZ'*/?) — pA1)
.= ISTA(Z'T'/? | DY).

Sparse Coding Proximal Step

sparsification

| zt12 r R g+l

(a) (b)

Figure: (a). Visualization of ISTA block; (b). Architecture of ISTA block.
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One Layer of CRATE

Each layer of CRATE thus incrementally optimizes the compression term
R¢(Z;U|g)) and sparsification term || Z||o — R(Z),

Z' = f(Z") = 15Ta((1d + ussa)(ZY)).
S————

Ze+1/2

More specifically,
Ze+1/2 _ Z"+MSSA(Z£|U[K]) [Compression step]
Z'" = 18TA(Z°1/2 | DY), [Sparsification step]

so the /-th layer of the global representation f is

fE'Ze Id+MSSA Zg+1/2 ISTA Zg+1
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Overall White-Box CRATE Architecture

Sparse Coding
Proximal Step
(1sTA)

Aurocorrelanon
& Softmax
SsA Block

Self-Attention
(Mssa)

_

SSA (neadK) MSSA Block |

® Forward optimization: perform compression and sparsification.

® |earning from data: apply SGD to learn (U[‘}(],Df)fz1 from data.
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Experiment |: Supervised Learning on ImageNet-1K

Experimental setup: let the CLS token of Z' (i.e., the output token set of

the last layer), and then apply a linear linear to perform supervised learning
on ImageNet-1K using our proposed CRATE architecture.

Table 1: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on ImageNet.
For ImageNet/ImageNetReal, we directly evaluate the top-1 accuracy. For other datasets, we use models that
are pre-trained on ImageNet as initialization and the evaluate the transfer learning performance via fine-tuning.

Datasets CRATE-T CRATE-S CRATE-B CRATE-L \ VIiT-T ViT-S
# parameters 6.09M 13.12M 22.80M 77.64M | 572M 22.05M
ImageNet 66.7 69.2 70.8 71.3 71.5 72.4
ImageNet Real 74.0 76.0 76.5 714 78.3 78.4

® CRATE demonstrates promising performance on the ImageNet-1K
dataset, indicating its potential for further advancement.
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el Sl
Experiment |: Supervised Learning on ImageNet-1K

Experimental setup: apply the CRATE model pre-trained on ImageNet-1K
as initialization, and then evaluate transfer learning performance via
fine-tuning.

Table 1: Top 1 accuracy of CRATE on various datasets with different model scales when pre-trained on ImageNet.

For ImageNet/ImageNetReaL., we directly evaluate the top-1 accuracy. For other datasets, we use models that
are pre-trained on ImageNet as initialization and the evaluate the transfer learning performance via fine-tuning.

Datasets CRATE-T CRATE-S CRATE-B CRATE-L | VIiT-1 ViT-S
# parameters 6.09M 13.12M 22.80M 77.64M | 5.72M 22.05M
ImageNet 66.7 69.2 70.8 71.3 71.5 72.4
ImageNet Real 74.0 76.0 76.5 77.4 783 78.4
CIFARI10 95.5 96.0 96.8 97.2 96.6 97.2
CIFAR100 78.9 81.0 82.7 83.6 81.8 83.2
Oxford Flowers-102 84.6 87.1 88.7 88.3 85.1 88.5
Oxford-IIIT-Pets 81.4 84.9 85.3 87.4 88.5 88.6

® CRATE achieves performance close to thoroughly engineered vision
transformers.

® Promising scaling behavior in CRATE.
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CRATE: Identification/Representation of Low-D Structures at Scale

Experimental Results on CRATE

Experiment Il: Layer-wise Analysis of CRATE

Given a learned CRATE model, we measure the compression term of Z¢*1/2
(left, R°(Z'+1/2)) and the sparsification term of Z+! (right, | Z**||y) on
train/validation samples at each layer.

Measure coding rate across layers
! %\/5\1
) s
3 &"/I\'
] ANF
: .
] ==
ﬂ N
5
&
—e— train
w00
e~ val
H T
Layer index - £
[}

Measure output sparsity across layers

Sparsity [ISTA block]

o

train
val

Layer index - £

layer incrementally optimizes the compression term and the
sparsification term.

Sam Buchanan Deep Representations from the Ground Up

June 9, 2023

The learned CRATE model indeed performs its design objective — each

68/74



CRATE: Identification/Representation of Low-D Structures at Scale Experimental Results on CRATE

Experiment Il: Layer-wise Analysis of CRATE

For comparison, we measure the compression /sparsification term of
randomly initialized CRATE model and models at different epochs.

Measure coding rate across layers Measure output sparsity across layers
- o
: \
’\oﬂ;\.\\‘ _ \
< N g b e
8 2 B /
s 0( 6 R \:\ a /_/1
3 | e o | " e g o
2 ~ Sl Syiom e
N uof -e- rand init A\ @on{ -8~ rand init B
% 1000} —@— epoch 1 <} ° 8.1 —= epoch1
ol —@ epoch 20 N 4 @— epoch 20
o epoch 150 \0 o1 o epoch 150 v
: 3 o i 3 R

Layer index - £ Layer index - £

® Without learning from data, the random initialized CRATE model does
not perform its design objective effectively.
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CRATE: Identification/Representation of Low-D Structures at Scale Experimental Results on CRATE

Experiment Ill: Visualize Layer-wise Output of CRATE

We use heatmaps to visualize the output of each layer in CRATE (Z1).

® \We observe clear sparse and low-rank patterns of intermediate outputs
of CRATE.
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CRATE: Identification/Representation of Low-D Structures at Scale Experimental Results on CRATE

Experiment IV: Visualize Learned Subspaces of CRATE

We use heatmaps to visualize the correlations between different subspaces
(Ux)E_, of each MSSA layer in CRATE, i.e., [Uf,... . UL]*[Uf,...,U%].

H‘"\. I B " I H“'\-\. I = ™, I
=%l g w "
., -, -, -,
.\.'\- 5'\- .\.'\- .\.'\-
" ", ", ",
@e=1. (b) £ =2. © (=3 )6 =4.
e T i AT
] | b -,
. " ", b
.\.'\- .\.'\- .\.'\- .\.'\-
., ", ", 1
" a ™, I
(e) ¢ =5. ®L=6. @L=T. (h) =38
— —_— —— —
& " .H.'\- R "u, B "
i S i RS
. ., ., .,
b . b "
@He=9. () £ =10. (k)£ =11. me=12.

® The learned subspaces in MSSA blocks are incoherent.
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A Parting Message

We've seen today
e What structures in modern data are we learning?

® Resource requirements for identifying nonlinear manifolds

Manifold representation with manifold learning and diffusion

Joint identification/representation via white-box transformers

[ For white-box deep networks, the future is bright!

figures/diffusion-iteratic

Thank You! Questions?




Call for Papers

7

e |EEE JSTSP Special Issue on Seeking Low-dimensionality in
Deep Neural Networks (SLowDNN) Manuscript Due: Nov. 30,
2023.

® Conference on Parsimony and Learning (CPAL) January 2024,
Hongkong, Manuscript Due: Aug. 28, 2023.




____ Corclisionsand AlLook Aread |
CEU/PDH Certificates

You can receive an CEU/PDH certificate by completing the course
and pass the quiz. Here is the quiz/evaluation form:

https://bit.1ly/ICASSP23_QuizSC2
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