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Outline

@ Neural Collapse, Transfer Learning, & Intermediate Layers



Neural Collapse in Classification
Labels: k=1,..., K

® K =10 classes (MNIST, CIFAR10, etc)
e K = 1000 classes (ImageNet)
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Assume balanced dataset where each class has n training samples

® If not, we can use data augmentation to make them balanced
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Neural Collapse, Transfer Learning, & Intermediate Layers

Deep Neural Network Classifiers

A deep neural network classifier often contains two parts: a feature
mapping and a linear classifier

Input Feature/representation Output
(Our focus) §
- -
y 8 5,

= . feature mapping ¢g: ()

linear classifier
————

Wh+b
{w,b}

(e.g., convolution layers)
¢ Qutput: f(x;0) =

® Training problem:

W g (x) + b with 0 = (0/, W.b).

Suin, ZZCCE W¢o'(fb'k,z) +b.yr) +A (0, W, b)|[%
k=1 1i=1

cross-entropy (CE) loss weight decay
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Neural Collapse, Transfer Learning, & Intermediate Layers

Neural Collapse in Classification

Prevalence of neural collapse during the terminal P
phase of deep learning training @

Vardan Papyan, 2 X. Y. Han, and David L. Donoho ® &
+ See all authors and affiliations

PNAS October 6, 2020 117 (40) 24652-24663, first published September 21, 2020;
https://doi.org/10.1073/pnas.2015509117

Contributed by David L. Donoho, August 18, 2020 (sent for review July 22, 2020; reviewed by Helmut Boelsckei and
Stéphane Mallat)

® Reveals common outcome of learned features and classifiers across a
variety of architectures and dataset

® Precise mathematical structure within the features and classifier
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Neural Collapse, Transfer Learning, & Intermediate Layers

Implications of Neural Collapse in Transfer Learning?

Source Dataset Source Labels
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Efficient Fine-tuning of Pre-trained Models

¢ Full model fine-tuning (use pre-trained model
as an initialization)

® Expensive & prune to overfitting

® Linear probing with penultimate layer features
(use pre-trained model as a feature extractor)

® cheap but worse performance
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Efficient Fine-tuning of Pre-trained Models

¢ Full model fine-tuning (use pre-trained model
as an initialization)

® Expensive & prune to overfitting

A0

=L

r

[=]

Linear probing with penultimate layer features
(use pre-trained model as a feature extractor)

® cheap but worse performance @ SCAN ME

Message: We can design simple and efficient fine-tuning approaches
of pre-trained models via Neural Collapse.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Measure of Variability Collapse on Downstream Data

One key metric for Neural Collapse:

NCy = trace(SyXh).

e Within-class covariance:

n

K
1 — —\T
Yw = K Z Z (hi; — hi) (hii — hi)

n °
k=11:=1

e Between-class covariance:

K
1 — — T
Y5 = % ;:1: (hi. — h¢) (b — he)
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Neural Collapse, Transfer Learning, & Intermediate Layers

More Variability Collapse, Better Transfer Performance
Neural Collapse of pre-trained models evaluated on downstream data:

Figure: Transfer accuracy and NC; of Cifar-100 pre-trained models on

Transfer Acc. on Cifar-10

Transfer Acc. on Aircraft

Transfer Acc. on DTD

Transfer Acc. on PET

Transfer Acc.

Transfer Acc.

Transfer Acc.
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Transfer Acc

different downstream tasks.
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Neural Collapse, Transfer Learning, & Intermediate Layers

More Variability Collapse, Better Transfer Performance
Neural Collapse of pre-trained models evaluated on downstream data:

Transfer Acc. on Cifar-10 Transfer Acc. on Aircraft Transfer Acc. on DTD Transfer Acc. on PET
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Figure: Transfer accuracy and NC; of Cifar-100 pre-trained models on
different downstream tasks.
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Figure: Transfer accuracy and NC; of public ImageNet-1k pre-trained
models on different downstream tasks.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Parameter-Efficient Fine-Tuning via Neural Collapse

Observation: Better transfer performance can be achieved by mak-
ing the last-layer features more collapsed on the downstream data.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Parameter-Efficient Fine-Tuning via Neural Collapse

Observation: Better transfer performance can be achieved by mak-
ing the last-layer features more collapsed on the downstream data.

) Layers Frozen

Layers to update

. . . N H New Classifier E E New Classifier H
Skip connection layer fine-tuning : o i o !
(SCL-FT) E [ Trained Layer L H ; [ Trained Layer L E

® Only fine-tuning one key : 4 ¥ 4 E

. . ' Trained Layer i e Trained Layer i '
intermediate layer. : ; o ; :

® Improving feature collapse via ; WL“ EJS S

skip connections. : ! . : 3
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Neural Collapse, Transfer Learning, & Intermediate Layers

Better Performance with Significantly Fewer Parameters

Backbone | ResNet50 | Vit-B | cLp |

Dataset Cifar-10 Cifar-100 Aircraft DTD  PET ‘Aircraft DTD  PET ‘Aircraft DTD  PET

Transfer accuracy

Linear Probe / Zero Shot | 85.33 65.47 4323  68.46 89.26 | 43.65 73.88 9223 | 12.87 3234 39.66

Layer FT 94.04 T7.47 7027 67.66 89.40 | 65.83 77.13 9294 | 67.63 79.47 91.09
SCLFT 94.94 78.32 70.72 72.87 91.69 | 6580 77.34 93.13 | 66.58 79.04 90.02
Full Model FT 85.51 78.88 80.77 76.12 7324 | 64.66 76.54 93.02 | 59.11 72.82 84.44

NC; evaluated on the penultimate layer feature h’ !

Linear Probe / Zero Shot 1.84 18.36 20.36 3.52 1.45 17.91 1.99 0.66 17.47 2.96 3.77

Layer FT 0.28 3.22 3.37 1.68 0.68 6.98 1.62 0.44 1.30 0.42 0.32
SCLFT 0.22 2.61 1.02 0.64 0.39 7.48 1.33 0.35 1.65 0.61 0.46
Full Model FT 0.17 0.15 0.61 0.31 0.28 3.78 1.11 0.21 0.49 0.17 0.18

Percentage of parameters fine-tuned

Linear Probe / Zero Shot | 0.09% 0.86% 0.86% 0.41% 0.32% | 0.09% 0.04% 0.03% | 0.0% 0.0%  0.0%

Layer FT 6.52% 7.24% 7.24% 6.82% 6.73% | 8.18% 8.14% 8.13% | 816% 8.11% 8.10%
SCLFT 6.52% 7.24% 7.24% 6.82% 6.73% | 8.18% 8.14% 813% | 816% 8.11% 8.10%
Full Model FT 100% 100% 100%  100% 100% | 100%  100% 100% | 100%  100%  100%

Table: Transfer learning results for linear probing / zero-shot, layer FT,
SCL FT and full model FT on downstream datasets. We use publicly
available ResNet50, ViT-B and CLIP models.
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Less Overfitting Compared to Full Model FT
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Figure: Transfer accuracy for different fine-tuning methods with varying
size of downstream training dataset.

We fine-tune ImageNet-1k pre-trained ResNet18 models and CLIP using
subsets of the Cifar-10 and Cifar-100 downstream datasets, respectively
with varying sizes.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Parameter-Efficient Fine-Tuning via Neural Collapse
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Figure: Layer-wise A'C; for different fine-tuning methods on ResNet18.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Parameter-Efficient Fine-Tuning via Neural Collapse
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Figure: Layer-wise A'C; for different fine-tuning methods on ResNet18.
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Figure: Layer-wise A'C; for different fine-tuning methods on Vision
Transformer ViT-B32.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Representation Structures within the Intermediate Layers?
Is there any structure in the representations of intermediate layers?!

NCL = trace(Sh, M)

° Between—class covariance:

— _Z(zk—zg)( —zG)T

® Within-class covariance:

! Lo (o "
Bl = o 22 (ki =) (20— 24

k=1 1i=1

Ly, Papyan, Traces of class/cross-class structure pervade deep learning spectra, JMLR,
2021. He & Su, A Law of Progressive Separation for Deep Learning, 2022.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Representation Structures within the Intermediate Layers?
s there any structure in the representations of intermediate layers?*

ResNet18 (Cifar-10) CE

NCL = trace(Sh, M) ’

2

® Between-class covariance: More
K collapse
1 p

OICEFESICEEIN

k=1

log(NCy)

S =

: 3 a 5 6
Block Index

® Within-class covariance: epar

! 1 o= o A
S = g oo 2 (e 2) (s - )

k=1 1i=1

Effects of Depth: Creating progressive separation and concentra-
tion of data from shallow to deep layers!

Ly, Papyan, Traces of class/cross-class structure pervade deep learning spectra, JMLR,
2021. He & Su, A Law of Progressive Separation for Deep Learning, 2022.
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Neural Collapse, Transfer Learning, & Intermediate Layers

Prevalence of Progressive Separation in Deep Learning
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Neural Collapse, Transfer Learning, & Intermediate Layers

Prevalence of Progressive Separation in Deep Learning
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Transfer Learn

Neural Collaps:

Prevalence of Progressive Separation in Deep Learning
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Neural Collapse, Transfer Learning, & Intermediate Layers

Towards Understanding Progressive Collapse?

Given linearly separable data X, we measure a certain metric of data
separation of each layer's output for linear and nonlinear deep networks:

Deep Linear Network Deep Nonlinear Network
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Figure: Progressive collapse with linear decay’ on deep linear and nonlinear
networks. The z-axis denotes the layer index and the y-axis denotes the
separation measure.

2He & Su, A Law of Progressive Separation for Deep Learning; 2022.
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Towards Understanding Progressive Collapse?

Given linearly separable data X, we measure a certain metric of data
separation of each layer's output on linear and nonlinear deep networks:

Deep Linear Network Deep Nonlinear Network
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Even training overparameterized deep linear networks could have
infinite many solutions, why do such benign structures happen?
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Outline

@® Law of Parsimony in Gradient Dynamics



Main Message

Cx .
NZEE

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of the weight matrix Wy (t) = U; (£)3,(t) Vi (¢) .

Throughout training of deep networks, the gradient descent leads to
certain parsimonious structures in the weight matrices.
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Main Message

[/ X [ A (7 X

Singular Values Right Singular Vectors Left Singular Vectors

Throughout training of deep networks, the gradient descent leads to
certain parsimonious structures in the weight matrices.
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X=[£B1 9

Setup on Deep Linear Networks
. . ) NN dy d .
¢ Training data {(x;,v;)};L; C R% x R% with
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Law of Parsimony in Gradient Dynamics

Setup on Deep Linear Networks
* Training data {(z;,v;)}, C R% x R% with

X=[xix ... 2y] eREN Y = [y, 4y ... yn] € RN

¢ Deep linear network (DLN):
f@(:l:) = WL--‘W;[SB = WL;lw,

where W) € R4*4-1 and © = {Wfl}f:y

Qing Qu Low-dimensional Representations June 8, 2023 19 /49



Law of Parsimony in Gradient Dynamics

Setup on Deep Linear Networks
* Training data {(z;,v;)}, C R% x R% with

X=[xix ... 2y] eREN Y = [y, 4y ... yn] € RN

¢ Deep linear network (DLN):
f@(:l:) = WL--‘W;[:B = WL;lw,

where W) € R4*4-1 and © = {“fl}f:y
® | oss function:

1
min ((© Z | fo(x:) — yilly = 5 WX — Y|%.
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Training DLNs via Gradient Descent (GD)

® Orthogonal initialization. We use e-scale orthogonal matrices for
some € > 0, with

W,"(0)W;(0) =T or Wi(0)W,' (0) = %I, Vie[L)],

depending on the size of W.
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Training DLNs via Gradient Descent (GD)

® Orthogonal initialization. We use e-scale orthogonal matrices for
some € > 0, with

W," (0)W;(0) =T or W;(0)W,'(0) = %I, Vi e [L],

depending on the size of W.

® | earning dynamics of GD. We update all weights via GD for
t=1,2,... as

Wit) =1 —-nA)Wi(t—1) —nVwl(®(t—1)), ViIe[L],

where n > 0 is the learning rate and \ > 0 controls weight decay.
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Training DLNs via Gradient Descent (GD)

We study the GD iterates for training DLNs under the following
assumptions:

® The weight matrices are square except the last layer, i.e.,
dy=dy =dy=---=dr_1=d forsome d € N,.
® The input data is whitened in the sense that XX ' = I; .3

® The cross correlation matrix Y X T has certain low-dimensional
structures (e.g., low-rank or wide matrix).

3For any full rank X € R%*N with N > d,, whitened data can always be obtained
with a data pre-processing step such as preconditioning.

Qing Qu Low-dimensional Representations June 8, 2023 21 /49



Law of Parsimony in Gradient Dynamics

Training DLNs via Gradient Descent (GD)

We study the GD iterates for training DLNs under the following
assumptions:

® The weight matrices are square except the last layer, i.e.,
dy=dy =dy=---=dr_1=d forsome d € N,.
® The input data is whitened in the sense that XX ' = I; .3

® The cross correlation matrix Y X T has certain low-dimensional
structures (e.g., low-rank or wide matrix).

Under the simplified settings, would GD possess any parsimonious
structures during training?

3For any full rank X € R%*N with N > d,, whitened data can always be obtained
with a data pre-processing step such as preconditioning.
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD lterates for DLNs
We train a L = 3 layer DLN with d, = d, = 30 and 7 := rank(Y") = 3.

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of the weight matrix Wy (t) = U, ()2, (t)Vi(t)T.
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD lterates for DLNs
We train a L = 3 layer DLN with d, = d, = 30 and 7 := rank(Y") = 3.

S N
RZBE

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of the weight matrix Wy (t) = U, ()2, (t)Vi(t)T.

® Left: the evolution of singular values o1;(t) throughout training ¢ > 0;
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD lterates for DLNs
We train a L = 3 layer DLN with d, = d, = 30 and 7 := rank(Y") = 3.

S N
RZEE

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of the weight matrix Wy (t) = U, ()2, (t)Vi(t)T.

® Left: the evolution of singular values o1;(t) throughout training ¢ > 0;
® Middle: the evolution of Z(v1;(t), v1;(0)) throughout training t > 0;
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in GD lterates for DLNs
We train a L = 3 layer DLN with d, = d, = 30 and 7 := rank(Y") = 3.

; o
NZBE R

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of the weight matrix Wy (t) = U, ()2, (t)Vi(t)T.

® Left: the evolution of singular values o1;(t) throughout training ¢ > 0;
® Middle: the evolution of Z(v1;(t), v1;(0)) throughout training t > 0;
¢ Right: the evolution of Z(u1;(t),u1,(0)) throughout training ¢ > 0.
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The Evolution of Singular Spaces in GD lterates for DLNs

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of the weight matrix Wy (t) = U, ()21 () Vi(t) .

The learning process takes place only within a minimal invariant
subspace of each weight matrix, while the remaining singular sub-
spaces stay unaffected throughout training.
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The Law of Parsimony in GD

Theorem (Yaras et al.’23)

Suppose we train an L-layer DLN fg(-) on (X,Y') via GD, the iterates
(Wi ()}, for all t > 0 satisfy the following:

e Case 1: Suppose Y X | € R%*d= with dy = and
m :=d, —2dy, >0. Then 3{U;}t., C 0% and {V;} L, C O?

satisfying Vio1 = U, for all | € [L — 1], such that Wi(t) admits the
following decomposition

Wi(t) = U, [W(l)(t) p(t‘)]Im] VT, Vie[L-1],¢>0,

where W(t) € RZ™*2" for all | € [L — 1] with W;(0) = £,
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The Law of Parsimony in GD

Theorem (Yaras et al.'23)

Suppose we train an L-layer DLN fg(-) on (X,Y') via GD, the iterates
(Wi ()}, for all t > 0 satisfy the following:
e Case 1: Suppose Y X | € R%*d= with dy = and
m :=d, —2dy, >0. Then 3{U;}t., C 0% and {V;} L, C O?
satisfying Viy1 = Uj for all | € [L — 1], such that Wi(t) admits the
following decomposition

wit) 0

WZ“)ZU’[ 0 o)L

]Vﬁ, Vie[L—-1], t>0,

where W(t) € RZ™*2" for all | € [L — 1] with W;(0) = £,

e Case 2: Suppose Y X € R%w*% js of rank r € N with dy = dg,
and m = d, — 2r > 0. Similar results hold with different p(t).
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The Law of Parsimony in GD

® Dynamics of singular values and vectors of weight matrices.
Let W, (t) = U,(t)%,(t)V," (), we can rewrite our decomposition as

T

Zi(t) 0 ][Vl,lf/l(t) Via|

Wi(t) = |Ui1 Ui(t) UL?][ 0 pt)I,

*M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR'23.
https://minyoungg.github.io/overparam/
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The Law of Parsimony in GD

® Dynamics of singular values and vectors of weight matrices.
Let W, (t) = U,(t)%,(t)V," (), we can rewrite our decomposition as

T

Zi(t) 0 ][Vhfﬁ(t) Via|

Wi(t) = Ul,lﬁl(t) UL?][ 0 pt)I,

¢ Invariance of subspaces in the weights. Both U; > and V5 of size
d — 2r are unchanged throughout training. The learning process
occurs only within an invariant subspace of dimension 27!

*M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR'23.
https://minyoungg.github.io/overparam/
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The Law of Parsimony in GD

® Dynamics of singular values and vectors of weight matrices.
Let W, (t) = U,(t)%,(t)V," (), we can rewrite our decomposition as

T

Zi(t) 0 ][W1‘~/E(t) Via|

Wi(t) = Ul,lﬁl(t) UL?][ 0 pt)I,

¢ Invariance of subspaces in the weights. Both U; > and V5 of size
d — 2r are unchanged throughout training. The learning process
occurs only within an invariant subspace of dimension 27!

e Implicit low-rank bias.* As lim. ,qp(t) = 0 for all t > 0, all the
weights W;(t) and the end-to-end matrix Wr.;(t) are inherently
low-rank (e.g., at most rank 2r).

*M. Huh et al. The Low-Rank Simplicity Bias in Deep Networks, TMLR'23.
https://minyoungg.github.io/overparam/
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Law of Parsimony in Gradie amics

The Evolution of Singular Spaces in More Generic Settings

SV w S S e
o 7 g, Mogg, " 1 2
7] BN 7] I Ky P L0

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of weight matrices without whitened data.
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Law of Parsimony in Gradient Dynamics

The Evolution of Singular Spaces in More Generic Settings

Z(vi(t), vi(0))

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of weight matrices without whitened data.

L(vi(t), vi(0))
(ui(t), ug0))

Singular Values Right Singular Vectors Left Singular Vectors

Figure: Evolution of SVD of weight matrices-with-momentum.
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Outline

© Progressive Feature Separation in Deep Neural Networks



Main Message

Deep Linear Network Deep Nonlinear Network

10! 10t
2 100 g 10°
3 3
© ® 10-1
210 s
5 510
51072 =
o © 1073
2 2
@ 10-3 @ 10-4
g10 g10

104 107° ¢

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Layer Index (Shallow - Deep) Layer Index (Shallow - Deep)

The law of parsimony in GD explains progressive feature separation.
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Progressive Feature Separation in Deep Neural Networks

Problem Setup: Train DLNs for Classification Problems

* Balanced Training Data: {(, Yr) }ic[n),ke(x] for K-class
classification: xy; € R? is the i-th sample in the k-th class, y;, € R¥
is an one-hot label.

® Feature in the /-th Layer of DLN:
lec,i =W,.. Wiz, = Wiz, Ve [L],
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Progressive Feature Separation in Deep Neural Networks

Problem Setup: Train DLNs for Classification Problems

* Balanced Training Data: {(, Yr) }ic[n),ke(x] for K-class
classification: xy; € R? is the i-th sample in the k-th class, Yi € RE
is an one-hot label.

® Feature in the /-th Layer of DLN:

lec,i =W Wiz, = Wiy, Ve [L],

* Measure of Data Separation: we replace NC} = trace(E{,VEg)
with a simpler measure

Dy := trace(Zy) /trace(Zhy),
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Progressive Feature Separation in Deep Neural Networks

Problem Setup: Train DLNs for Classification Problems

* Balanced Training Data: {(, Yi) }icjn) ke[ for K-class
classification: x; € R? is the i-th sample in the k-th class, y; € R
is an one-hot label.

® Feature in the [-th Layer of DLN:

zh; = Wi.. Wiz, = Wiy, Vi€ [L],

* Measure of Data Separation: we replace NC} = trace(E{,VEg)
with a simpler measure

Dy := trace(Zy) /trace(Zhy),

3

M g
/\
|
N
QL7

K
1 AT
n— Z < — zk) (zm — zk) , st =

k=1 1i=1 k:
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Progressive Feature Separation in Deep Neural Networks

Progressive Feature Separation with

L =6, Linear Activation

L =8, Linear Activation

Linear Decay Rate

L =10, Linear Activation
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3
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107t
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Q10 q qw
2
10° 103
1072 1073 107*
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L =6, ReLU Activation L =8, RelLU Activation L =10, ReLU Activation
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10°
10°
107t
101 1072
qQ q_ qQ
1072 10 1074
102 10-5 . o
10°° .
107*

2 3
Layer Index (/)

°

2 3 a4 5
Layer Index (/)

0

i

2

3 4 5 6 7
Layer Index (/)

Figure: Linear decay of feature separation in trained deep networks.
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Progressive Feature Separation in Deep Neural Networks

Progressive Feature Separation with Linear Decay Rate
Theorem (Wang et al.’23)

Suppose we train a L-layer DLN with parameters ©® = {VVZ}ZLzl via GD
with orthogonal initialization of e-scaling, where input X € RN g
orthogonal and square and dy = d > 2K . If © satisfies the following:

® Global Optimality: W ;1 X =Y.

® Balancedness: For all weights

WL Wi = WiW' Vi€ [L -2,
W, W, — Wi W,_|||r <e?Vd-K.
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Progressive Feature Separation in Deep Neural Networks

Progressive Feature Separation with Linear Decay Rate
Theorem (Wang et al.’23)

Suppose we train a L-layer DLN with parameters © = {W,}L | via GD
with orthogonal initialization of e-scaling, where input X € RN g
orthogonal and square and dy = d > 2K . If © satisfies the following:

® Global Optimality: W ;1 X =Y.

® Balancedness: For all weights

WL Wi = WiW' Vi€ [L -2,
W, W, — Wi W,_|||r <e?Vd-K.

® Unchanged Spectrum: There exists an index set A C [d] with
|A| = d — 2K such that for all | € [L — 1] that 0;(W)) = ¢, Vi € A.
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Progressive Feature Separation in Deep Neural Networks

Progressive Feature Separation with Linear Decay Rate
Theorem (Wang et al.’23)

Suppose we train a L-layer DLN with parameters © = {W,}L | via GD
with orthogonal initialization of e-scaling, where input X € RN g
orthogonal and square and dy = d > 2K . If © satisfies the following:

® Global Optimality: W ;1 X =Y.

® Balancedness: For all weights

WL Wi = WiW' Vi€ [L -2,
W, W, — Wi W,_|||r <e?Vd-K.

® Unchanged Spectrum: There exists an index set A C [d] with
|A| = d — 2K such that for all | € [L — 1] that 0;(W)) = ¢, Vi € A.
Then, it holds for all | = 0,1,...,L — 2 that

Dl+1/Dl < 2(\/?4— 1)62.
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Progressive Feature Separation in Deep Neural Networks

Layer 1

Singular Values Right Singular Vectors Left Singular Vectors

Layer 2

Singular Values Right Singular Vectors Left Singular Vectors

Layer 3
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Effects of Initialization Scale ¢

As predicted by our theory, the decay ratio critically depends on the scale
of initialization &:

Linear Activation ReLU Activation

10t — =05 1o — =05
— = 0.25 — = 0.25
10° — = 0.125 — = 0.125
100
107!
107
Qo q
1072
1073
-3
10 10
10-5 10
0 3 0 3

1 2 1 2
Layer Index (/) Layer Index (/)

Figure: Linear decay of feature separation measure D; in trained deep
networks with varying initialization scale ¢.
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Progressive Feature Separation in Deep Neural Networks

Tradeoffs Between Decay Rate and Convergence

However, there is trade-off between decay rate € and training speed of GD:

100 n=0.1,=0.5 100 n=0.1,6=0.05

102 102 M S
S w0 8 10+
© ©
> 106 > -6
s s
S 1078 S 1078
= g
3 1071 35 1071
o [T

1012 10-12

10714 10-14

0 100 200 300 400 500 0 2000 4000 6000 8000
Num. of Iterations (t) Num. of Iterations (t)

Figure: The dynamics of GD for DLNs with learning rate np = 0.1.
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Progressive Feature Separation in Deep Neural Networks

Is the Orthogonal Initialization Critical?

Orth Init, Linear Activation Norm Init, Linear Activation Unif Init, Linear Activation
10! 10! 10!
10° 10° 100
107 10t 10!
[s) 0 Q -2 Q-
10-3 o 107
10~ 10-4
104
) 1 2 3 4 5 6 7 0 1 2 3 4 5 7
Layer Index (I) Layer Index (/) Layer Index (/)
Orth Init, ReLU Activation Norm Init, ReLU Activation Unif Init, ReLU Activation
10" 10t 10t
10° 100
10 10 101
S <102 ~10-?
Q 103 Q -3 Q -
10 1073
s 104 107
10 1075 (J 10-° (J
o 1 2 3 4 5 6 7 o 1 2 3 4 5 6 1 o 1 2 3 a4 5
Layer Index (/) Layer Index (/) Layer Index (/)

Figure: Linear decay of feature separation in trained DLNs with different
initialization types (left to right: Orth., Norm, Unif).

Qing Qu Low-dimensional Representations June 8, 2023 35/49



Outline

O Efficient Deep Matrix Completion



Main Message

-1
. Original 10
Compressed 4
* Initialization 10
1077
»n 10710
3
—10-13
810 10-16
Sas mmmm Original
-19
10 Compressed
- m;c 0% oo 0 10 20 30 40

Time (s)

Figure: Efficient training of deep linear networks.

The law of parsimony in GD leads to efficient network compression.
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Problem Setup for Deep Matrix Completion

Consider recovering & € R?*? with r := rank(®) < d with minimum
number of observation encoded by € € {0, 1}9*¢:

. 1
ngnémc(Q) = §HQ © (Wra — ‘I’)H%-
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Problem Setup for Deep Matrix Completion

Consider recovering & € R?*? with r := rank(®) < d with minimum
number of observation encoded by € € {0, 1}9*¢:

. 1
ngn@mc(Q) = §HQ © (Wra — ‘I’)H%

® |f full observation 2 = ldl(—ir available, the problem simplifies to deep
matrix factorization.
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Efficient Deep Matrix Completion

Problem Setup for Deep Matrix Completion

Consider recovering & € R?*? with r := rank(®) < d with minimum
number of observation encoded by € € {0, 1}9*¢:

i 1
min bne(©) := S| © (Wra — ®)|%.
® |f full observation 2 = ldl(—ir available, the problem simplifies to deep
matrix factorization.

® |f the network depth L = 2, it reduces to the Burer-Monteiro
factorization formulation.
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Efficient Deep Matrix Completion

Why Deep Matrix Factorization and Overparameterization?

leo3 Benefit of Depth 500 Benefit of Width
1.2 == Depth=3 == Depth=3
4= Depth=2 =
g 10 S 400
bed Ll
508 X
> £ 300
@ 0.6 (s}
> =
S0.4 ©
2 2200
0.2 %
0.0 100
20 40 60 80 100 20 40 60 80 100
Width Width

* Benefits of Depth (Left): Improved sample complexity® and less
prone to overfitting.

®Arora, S., Cohen, N., Hu, W., & Luo, Y. (2019). Implicit regularization in deep
matrix factorization. Advances in Neural Information Processing Systems, 32
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Efficient Deep Matrix Completion

Why Deep Matrix Factorization and Overparameterization?

leos Benefit of Depth 500 Benefit of Width
1.21 53— pepth=3 —3— Depth=3
4= Depth=2 =
g 10 S 400
bed Ll
508 X
> £ 300
@ 0.6 (s}
> =
S0.4 ©
2 2200
0.2 %
0.0 100
20 40 60 80 100 20 40 60 80 100
Width Width

* Benefits of Depth (Left): Improved sample complexity® and less
prone to overfitting.

¢ Benefits of Width (Right): Increasing the width of the network
results in accelerated convergence in terms of iterations.

®Arora, S., Cohen, N., Hu, W., & Luo, Y. (2019). Implicit regularization in deep
matrix factorization. Advances in Neural Information Processing Systems, 32
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Overparameterization: A Double Edged Sword

-1
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Figure: Efficient training of deep linear networks.

Cons: Increasing the depth and width of the network leads to much
more parameters. Could be expensive to optimize!
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How to Achieve the Best of Two Worlds?

® Deep matrix factorization. As a starting point, consider the simple
deep matrix factorization setting:

1
in —[|W;.4 — ®|2
min 2“ L1 1%,

with @ = ldlg. We optimize the problem via GD from &-scale
orthogonal initialization.
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How to Achieve the Best of Two Worlds?

® Deep matrix factorization. As a starting point, consider the simple
deep matrix factorization setting:

1
in —[|W;.4 — ®|2
min 2“ L1 1%,

with Q = ldldT. We optimize the problem via GD from e-scale
orthogonal initialization.

® Law of parsimony in GD for the end-to-end matrix Wi.q:

Wi () o Im] [gﬂ

= U Wra(t)Vi]) + pL (U2 Vi,

where we overestimate the rank 7 > r and let m = d — 27.
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How to Achieve the Best of Two Worlds?

® The effects of small initialization ¢ and depth L:

Wra(t) = UL,1WL:1(t)‘/1,T1 + pH (UL 2 V1,
UL Wia(t)Vi]y, Vit >0,

Q
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How to Achieve the Best of Two Worlds?

® The effects of small initialization ¢ and depth L:

Wra(t) = UL,1WL:1(t)‘/1,T1 + pH (UL 2 V1,
UL Wia(t)Vi]y, Vit >0,

Q

Claim: With small initialization, running GD on the original weights
{W;}, € R¥ is almost equivalent to running GD on the com-
pressed weights {Wfl}L C RZTX7T,
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The Simple Case: Deep Matrix Factorization
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Figure: Efficient training of deep linear networks.

Comparison on the number of parameters: original network Ld>
vs. compressed network L72.
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Efficient Deep Matrix Completion

From Deep Matrix Factorization to Completion?

g 10-2 1072 ==
=z U \
W, L 107 L 107
Y Initialization O o
L 1076 i 1076
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S mmmm Original | O mmmm Original
£ 1070 wy,, | €107 Wi,
10712 wgg’np 10712 WE%?np
0 500 1000 1500 0 10 20 30 40
Iteration (x100) Time (s)
® However, directly applying our approach from deep matrix
factorization to completion does not work well...
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Efficient Deep Matrix Completion

From Deep Matrix Factorization to Completion?
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® However, directly applying our approach from deep matrix

factorization to completion does not work well...

® This is due to the fact that the law of parsimony in GD:

Wia(t) = UpiWea(tVi, V>0,

does NOT hold, because €2 ® ® is not low-rank for arbitrary €2.
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Efficient Deep Matrix Completion

From Deep Matrix Factorization to Completion?

m— Original 1072 ;'\ 102 ==

Wiy, 2
we, _ 1o _ 107
Y initialization 9 S
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el el
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S mmmm Original | O mmmm Original
& 10710 () & 10710 )
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10712 WS, 10712 WS,
0 500 1000 1500 0 10 20 30 40
Iteration (x100) Time (s)

® Remedy: update both V; 1(t) and Uy, ;(t) factors via GD with a
discrepant learning rate v in the “compressed network” :°

W) = U1 ()W () Vi (1).

This is done simultaneously with the GD updates on the subnetwork Wm(t), which
uses the original learning rate 7.
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Efficient Deep Matrix Completion

From Deep Matrix Factorization to Completion?

m— Original 1072 ;'\ 102 ==

Wiy, 2
we, _ 1o _ 107
Y initialization 9 o
o 1076 w1076
el el
¢ 1078 ¢ 1078
S mmmm Original | O mmmm Original
& 10710 () & 10710 )
chmp chmp
10712 wiel, 10712 w,
0 500 1000 1500 0 10 20 30 40
Iteration (x100) Time (s)

® Remedy: update both V; 1(t) and Uy, ;(t) factors via GD with a
discrepant learning rate v in the “compressed network” :°

Wi (®) = Ui Wea (Vi (2).
e Complexity: original network O(Ld?) vs compressed network O(Ld).

This is done simultaneously with the GD updates on the subnetwork Wm(t), which
uses the original learning rate 7.
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Efficient Deep Matrix Completion

Compressed Networks vs. Narrow Networks?

Question: Does law of parsimony imply that optimizing a narrow
network of the same width 27 would perform just as efficiently as the
compressed network with a true width of d > 77
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Efficient Deep Matrix Completion

Compressed Networks vs. Narrow Networks?

Question: Does law of parsimony imply that optimizing a narrow
network of the same width 27 would perform just as efficiently as the
compressed network with a true width of d > 7?
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Figure: Efficiency of compressed networks vs. narrow network.
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Efficient Deep Matrix Completion

Compressed Networks vs. Narrow Networks?
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Figure: Efficiency of compressed networks vs. narrow network.

[ Answer: No! Over-parameterized networks are “easier” to train.
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Conclusion and Coming Attractions

Learning common deep networks for low-dim structure
* Low-dimensional features: understand low-dim. features (sparse
and neural collapse (NC)) learned in deep classifiers trained with
one-hot labeling based losses
e Law-of-parsimony in GD: efficient network compression & training,
and understanding intermediate layers of deep networks

Next lecture: Theory and practice of classifying and representing
data with nonlinear low-dimensional structures.

Thank You! Questions?



Call for Papers

7

® |EEE JSTSP Special Issue on Seeking Low-dimensionality in
Deep Neural Networks (SLowDNN) Manuscript Due: Nov.
30, 2023.

e Conference on Parsimony and Learning (CPAL) January 2024,
Hongkong, Manuscript Due: Aug. 28, 2023.
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