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Recap: Deep Representation Learning

• A typical deep neural network has multi-layered structure

• Representation/feature: there is no (consensus) formal definition
• any function of the input (to enable learning algorithms to better

understand and make predictions)

• Today’s lecture: what are the representations learned within DNNs?
• challenge: high dimensionality; no simple criteria for good/bad features
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Focus: Geometrization of Learned Representations

• We will characterize different properties of the learned features from
two complementary perpectives

• Various low-dimensional structures emerge in both perspectives
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Outline

1 Learned Low-dimensional Features: Micro View
Sparse Features are Prevalent
Sparse Dictionary Net
Transform is sparse

2 Learned Low-dimensional Features: Macro View
Topology Change
Intrinsic Dimension
Neural Collapse (NC)
Geometric analysis for understanding NC
Exploit NC for improving training efficiency
Exploit NC for understanding the effect of loss functions
Progressive separation from shallow to deep layers



Learned Low-dimensional Features: Micro View Sparse Features are Prevalent

Sparse Features are Prevalent

• For each input, the features learned in each layer are sparse1

1Minsoo Rhu et al, Compressing DMA Engine: Leveraging Activation Sparsity for Training
Deep Neural Networks, HPCA, 2018.
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Learned Low-dimensional Features: Micro View Sparse Features are Prevalent

Sparse Features are Prevalent

• For each input, the features learned in each layer are sparse2

• Similar sparse features also appear in other CNNs, e.g., VGG,
GoogLeNet, SqueezeNet, etc.

• Could we explicitly control the sparsity?
2Zonglin Li , Chong You, et al, Large Models are Parsimonious Learners: Activation Sparsity

in Trained Transformers, ICLR 2023.
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Learned Low-dimensional Features: Micro View Sparse Dictionary Net

Convolutional Sparse Coding (CSC) Layer I

• We can replace each layer by a convolutional sparse coding layer3

- Classical convolutional layer

z⋆︸︷︷︸
output

= W︸︷︷︸
conv matrix

x︸︷︷︸
input

- Analysis model

- Sparsity is not controllable

- Easy to implement

- Convolutional sparse coding layer

z⋆︸︷︷︸
output

= argmin
z

∥ x︸︷︷︸
input

−Az∥22+λ∥z∥1

- Synthesis model

- Sparsity is controllable

- High computational complexity?

• λ controls the tradeoff between the residual and sparsity

• Use FISTA to compute z⋆, producing an unrolled network
architecture (see Lecture 2 by Atlas for the details)
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Learned Low-dimensional Features: Micro View Sparse Dictionary Net

Convolutional Sparse Coding (CSC) Layer II

• Use CSC layer to build sparse Sparse Dictionary Net (SDNet)

• SDNet obtains on par performance with similar training time as
ResNet, orders of magnitude faster than previous sparse methods
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Learned Low-dimensional Features: Micro View Sparse Dictionary Net

Convolutional Sparse Coding (CSC) Layer III

• The convolutional sparse coding model is stable to input corruptions.

Theorem (informal) [Papyan et al.’17] Suppose xo = Azo with
sparse zo. Given a corrupted input x = xo + e, if we choose λ =
O(∥e∥2), then (i) z⋆ is sparse with supports contained in zo, and
(ii) ∥z⋆ − zo∥ = O(∥e∥2).

• If data is corrupted, we can adjust λ to produce robust prediction.

• No need to modify the training procedure, unlike existing ones that
require heavy data augmentation or additional training techniques.
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Learned Low-dimensional Features: Micro View Sparse Dictionary Net

Convolutional Sparse Coding (CSC) Layer IV

• The optimal λ increases with the corruption/noise level.

• As the reconstruction error correlates with the corruption level, we
can estimate the optimal λ by linearly fitting the reconstruction error.
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Learned Low-dimensional Features: Micro View Sparse Dictionary Net

Convolutional Sparse Coding (CSC) Layer V

• SDnet is more robust compared to classical DNNs [Dai et al.’22]

• SDnet is also robust to adversarial perturbation using PGD attack

3Papyan et al., Working locally thinking globally: Theoretical guarantees for convolutional
sparse coding, TSP 2017.
Sun et al, Supervised deep sparse coding networks for image classification, TIP 2019.
Dai et al, Revisiting Sparse Convolutional Model for Visual Recognition, NeurIPS 2022.
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Learned Low-dimensional Features: Micro View Transform is sparse

Larger Models, the Sparser I

• Transformers are Sparse4
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Learned Low-dimensional Features: Micro View Transform is sparse

Larger Models, the Sparser II

• Sparse activations (features) emerge in different transformers and
datasets for both natural language processing and vision tasks4
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Learned Low-dimensional Features: Micro View Transform is sparse

Larger Models, the Sparser III

• Sparsity can be exploited to improve efficiency, robustness, and
calibration: a top-k transformer that only keeps the top-k largest
values of the activation maps4

• See tomorrow Sam’s lecture on White-Box Transformers

4Zonglin Li , Chong You, et al, Large Models are Parsimonious Learners: Activation Sparsity
in Trained Transformers, ICLR 2023.
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Learned Low-dimensional Features: Micro View Transform is sparse

From individual to collective behaviors

• Characterize how the features facilitate our decision tasks

- For classification: how the features are separated/discriminative
across different classes.

• We will study the collective behaviors of the features {hk,i} of the
entire classes of objects
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Outline
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Learned Low-dimensional Features: Macro View

Setup: Image Classification Problem

Labels: k = 1, . . . ,K

• K = 10 classes (MNIST, CIFAR10, etc)

• K = 1000 classes (ImageNet)

Assume balanced dataset where each class has n training samples

• If not, we can use data augmentation to make them balanced
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Learned Low-dimensional Features: Macro View

Deep Neural Network Classifiers I
A deep neural network classifier often contains two parts: a feature
mapping and a linear classifier

• Output: f(x;θ) = Wϕθ′(x) + b with θ = (θ′,W , b).

• Training problem:

min
θ′,W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Wϕθ′(xk,i) + b,yk

)︸ ︷︷ ︸
cross-entropy (CE) loss

+λ ∥(θ′,W , b)∥2F︸ ︷︷ ︸
weight decay
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Learned Low-dimensional Features: Macro View

Deep Neural Network Classifiers II
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Learned Low-dimensional Features: Macro View

Focus: Geometrization of Learned Representations

• We will characterize different properties of the learned features from
two complementary perpectives

• Various low-dimensional structures emerge in both perspectives
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Learned Low-dimensional Features: Macro View Topology Change

Representations: Topology Change I

• The topology of two classes M1 ∪M2 changes through the
layer-wise transformation5

• Progressively separate the two classes from shallow to deep layers
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Learned Low-dimensional Features: Macro View Topology Change

Representations: Topology Change II

• Study of topology of shapes dates back to Leonhard Euler in 18th
century

• Algebraic topology offers a mature set of tools for counting and
collating holes6

• The number of holes of an entire class M is called the Betti number

- zeroth Betti number β0(M): number of connected components
- k-th Betti number βk(M): the number of k-dimensional holes
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Learned Low-dimensional Features: Macro View Topology Change

Representations: Topology Change III
• The beti number progressively decreases from shallow to deep layers

5Naitzat et al., Topology of deep neural networks, JMLR 2020.
6Ghrist, Robert, Barcodes: the persistent topology of data, Bulletin of the American

Mathematical, 2008.
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Learned Low-dimensional Features: Macro View Intrinsic Dimension

Representations: Intrinsic Dimension

• Intrinsic dimension for a data set M: viewed as the minimal number
of variables to describe the data

• Natural images lies on a manifold of low intrinsic dimension7

7Brown et al, Verifying the Union of Manifolds Hypothesis for Image Data, ICLR 2023.
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Learned Low-dimensional Features: Macro View Intrinsic Dimension

Representations: Intrinsic Dimension
• Intrinsic dimension first increases, then progressively decreases across
layers8

8
Ansuini et al., Intrinsic dimension of data representations in deep neural networks, NuerIPS 2019.

Zhihui Zhu Low-Dimensional Representations June 08, 2023 23 / 67



Learned Low-dimensional Features: Macro View Intrinsic Dimension

Representations: Topology and Intrinsic Dimension

• Both topology and intrinsic dimension perspectives capture certain
low-dimensional structures in the learned representations

• But neither captures the geometry that distinguishes different classes
of objects
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Learned Low-dimensional Features: Macro View Neural Collapse (NC)

Neural Collapse in Classification I

• Reveals common outcome of learned features and classifiers across a
variety of architectures and dataset

• Precise mathematical structure within the features and classifier
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Learned Low-dimensional Features: Macro View Neural Collapse (NC)

Neural Collapse in Classification II
Neural Collapse (NC) refers to

• NC1: Within-Class Variability Collapse: features of each class collapse
to class-mean with zero variability (low-dim features: they live on a
K-dim subspace):

k-th class, i-th sample : hk,i → hk,
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Learned Low-dimensional Features: Macro View Neural Collapse (NC)

Neural Collapse in Classification III

Neural Collapse (NC) refers to

• NC2: Convergence to Simplex Equiangular Tight Frame (ETF): the
class means are linearly separable, have same length, and maximal
angle between each other

⟨hk,hk′⟩
∥hk∥∥hk′∥

→

{
1, k = k′

− 1
K−1 , k ̸= k′
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Learned Low-dimensional Features: Macro View Neural Collapse (NC)

Neural Collapse in Classification IV

• For any K unit-length vectors u1, . . . ,uK in Rd (with d ≥ K − 1),
then maxk ̸=k′⟨uk,uk′⟩ ≥ − 1

K−1 and the minimum is achieved when
they form a simplex ETF [Rankin’55].

• The simplest case of the Optimal Packings on Spheres, or the
Tammes problem.

• Proof:

0 ≤
∥∥ K∑
k=1

uk
∥∥2
2
≤ K +K(K − 1)max

k ̸=k′
⟨uk,uk′⟩

=⇒max
k ̸=k′

⟨uk,uk′⟩ ≥ − 1

K − 1

achieves equality when
∑K

k=1 uk = 0 and ⟨uk,uk′⟩ = − 1
K−1 ,∀k ̸= k′
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Learned Low-dimensional Features: Macro View Neural Collapse (NC)

Neural Collapse in Classification V

Neural Collapse (NC) refers to

• NC3: Convergence to Self-Duality: the last-layer classifiers are
perfectly matched with the class-means of features

wk

∥wk∥
→ hk

∥hk∥
,

where wk represents the k-th row of W .
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Learned Low-dimensional Features: Macro View Neural Collapse (NC)

Neural Collapse in Classification VI

NC is preferred among every successful exercise in feature engineering
[Papyan et al.’20]

• Information Theory: Simplex ETF is the optimal Shannon code

• Classification: Simple ETF features ⇒ Simplex ETF max-margin
classifier

Q: Why iterative training algorithm learns low-dimensional NC features
and classifiers?

A: We will use tools developed in nonconvex optimization in Lecture 4 to
understand NC phenomenon
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Learned Low-dimensional Features: Macro View Neural Collapse (NC)

Simplification: Unconstrained Features I

Training problem is highly nonconvex [Li et al.’18]:

min
θ′,W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Wϕθ′(xk,i) + b,yk

)
+ λ∥(θ′,W , b)∥2F

• Neural Tangent Kernel focuses on output, and thus hardly provides
much insights about features

• Neural Collapse is about the classifier W and the features ϕθ′(xk,i)
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Learned Low-dimensional Features: Macro View Neural Collapse (NC)

Simplification: Unconstrained Features II

• Neural Collapse is about the classifier W and the features ϕθ′(xk,i)

• To understand NC, we treat the features hk,i = ϕθ′(xk,i) as free
optimization variables (unconstrained features model [Mixon et al.’21])

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i + b,yk

)
+ λ∥({hk,i},W , b)∥2F
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Learned Low-dimensional Features: Macro View Neural Collapse (NC)

Simplification: Unconstrained Features III

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i + b,yk

)
+ λ∥({hk,i},W , b)∥2F

• Validity: Modern networks are highly over-parameterized, that can
approximate any point in the feature space

• Also called layer-peeled model and has been studied recently to
understand NC

• We will show such simplification preserves the core properties of
last-layer classifiers and features—the NC phenomenon
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Learned Low-dimensional Features: Macro View Neural Collapse (NC)

Simplification: Unconstrained Features IV

[Lu et al.’20] study the following one-example-per class model

min
{hk}

1

K

K∑
k=1

LCE

(
hk,yk

)
, s.t.∥hk∥2 = 1

[E et al.’20, Fang et al.’21, Gral et al.’21, etc.] study constrained formulation

min
{hk,i},W

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i,yk

)
, s.t. ∥W ∥F ≤ 1, ∥hk,i∥2 ≤ 1

These work show that any global solution has NC, but

• What about local minima/saddle points?

• The constrained formulations are not aligned with practice
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Geometric Analysis for Unconstrained Features Model I

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i + b,yk

)
+ λ∥({hk,i},W , b)∥2F

• Closely related to the matrix factorization problem in Lecture 4:
bilinear form Whk,i

• We will study its global/local minima and saddle points
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Geometric Analysis for Unconstrained Features Model II

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i + b,yk

)
+ λ∥({hk,i},W , b)∥2F

Theorem (global optimality) [Zhu et al. 2021] Let feature dim.
d ≥ #class K − 1. Then any global solution ({h⋆k,i,W ⋆, b⋆}) must
satisfy NC: b⋆ = 0 and

h⋆k,i = h
⋆
k︸ ︷︷ ︸

NC1

,
⟨h⋆k,h

⋆
k′⟩

∥h⋆k∥∥h
⋆
k′∥

=

{
1, k = k′

− 1
K−1 , k ̸= k′︸ ︷︷ ︸

NC2

,
wk⋆

∥wk⋆∥
=

h
⋆
k

∥h⋆k∥︸ ︷︷ ︸
NC3

• d ≥ K − 1 is required to make K class-mean features equal angle and
with cosine angle − 1

K−1 (the largest possible) between each pair.
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Geometric Analysis for Unconstrained Features Model III

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i + b,yk

)
+ λ∥({hk,i},W , b)∥2F

Theorem (benign global landscape) [Zhu et al. 2021] Let feature
dim. d > #class K. Then the above objective function (i) has no
spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature. Conjecture: d ≥ K − 1 is sufficient.
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Geometric Analysis for Unconstrained Features Model IV

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i+ b,yk

)
+λ∥({hk,i},W , b)∥2F (NVX)

Theorem (benign global landscape) [Zhu et al. 2021] Let feature
dim. d > #class K. Then the above objective function (i) has no
spurious local minima, and (ii) any non-global critical point is a strict
saddle with negative curvature.

• Proof idea: let zk,i = Whk,i. Then (NVX) is equivalent to the
following convex problem [Haeffele & Vidal’15, Li et al.’17, Ciliberto et al.’17]

min
Z,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
zk,i + b,yk

)
+ λ∥Z∥∗ + λ∥b∥22 (CVX)

where ∥ · ∥∗ is the nuclear norm (sum of singular values).
Zhihui Zhu Low-Dimensional Representations June 08, 2023 38 / 67



Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Geometric Analysis for Unconstrained Features Model V

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i+ b,yk

)
+λ∥({hk,i},W , b)∥2F (NVX)

min
Z,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
zk,i + b,yk

)
+ λ∥Z∥∗ + λ∥b∥22 (CVX)

• Step 1: (NVX) and (CVX) have the ”same” global solutions: if
(H⋆,W ⋆, b⋆) is a global solution of (NVX), then (W ⋆H⋆, b⋆) is a
global solution of (CVX); vice versa.

variational form ∥Z∥∗ = min
Z=WH

1

2
(∥W ∥2F + ∥H∥2F )
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Geometric Analysis for Unconstrained Features Model VI

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i+ b,yk

)
+λ∥({hk,i},W , b)∥2F (NVX)

min
Z,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
zk,i + b,yk

)
+ λ∥Z∥∗ + λ∥b∥22 (CVX)

• Step 2: if (H,W , b) is a critical point but not a global min of
(NVX)

- (Z, b) with Z = WH is not a critical point to (CVX)
- (Z, b) does not satisfy the first-order optimality condition of (CVX)
- Exploiting this, we show the Hessian at (H,W , b) has a negative
eigenvalue, i.e., it is a strict saddle of (NVX)
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Geometric Analysis for Unconstrained Features Model VII

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i+ b,yk

)
+λ∥({hk,i},W , b)∥2F (NVX)

min
Z,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
zk,i + b,yk

)
+ λ∥Z∥∗ + λ∥b∥22 (CVX)

• Step 1: (NVX) and (CVX) have the ”same” global solutions.

• Step 2: if (H,W , b) is a critical point but not a global min of
(NVX)

- the Hessian at (H,W , b) has a negative eigenvalue, i.e., it is a strict
saddle

• Step 2 holds for any non-global critical point ⇒ (NVX) has benign
global landscape (no spurious local minima & strict saddle function)
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Geometric Analysis for Unconstrained Features Model VIII

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

LCE

(
Whk,i + b,yk

)
+ λ∥({hk,i},W , b)∥2F

Theorem (global optimality & benign global landscape) Let fea-
ture dim. d > #class K.

• Any global solution ({h⋆k,i,W ⋆, b⋆}) obeys Neural Collapse.
• The objective function (i) has no spurious local minima, and
(ii) any non-global critical point is a strict saddle with
negative curvature.

Message. Iterative algorithms such as (stochastic) gradient
descent will always learn Neural Collapse features and classifiers.
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Experiments on Practical Neural Networks
Conduct experiments with practical networks to verify our findings on
Unconstrained Features Model

Use a Residual Neural Network
(ResNet) on CIFAR-10 Dataset:

• K = 10 classes

• 50K training images

• 10K testing images
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Experiments: NC is algorithm independent I
ResNet18 on CIFAR-10 with different training algorithms

NC1 = trace(ΣWΣ†
B) small when features are collapsed and separated

within-class covariance (noise term) ΣW =
1

nK

K∑
k=1

n∑
i=1

(hk,i − hk)(hk,i − hk)
⊤

between-class covariance (signal term) ΣB =
1

K

K∑
k=1

(hk − hG)(hk − hG)
⊤
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Experiments: NC is algorithm independent II

ResNet18 on CIFAR-10 with different training algorithms

• The smaller the quantities, the severer NC

• NC across different training algorithms
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Learned Low-dimensional Features: Macro View Geometric analysis for understanding NC

Experiments: NC Occurs on Random Labels/Inputs
CIFAR-10 with random labels, multi-layer perceptron (MLP) with varying
network widths

• Validity of unconstrained features model: Learn NC last-layer
features and classifiers for any inputs

• The network memorizes training data in a very special way: NC

• We observe similar results on random inputs (random pixels)
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Learned Low-dimensional Features: Macro View Exploit NC for improving training efficiency

Exploit NC

Experiments in [Papyan, Han & Donoho] show NC leads to better

• Generalization performance

• Robustness

We can also exploit NC for

• Improving training efficiency (covered later)

• Understanding the effect of loss functions (covered later)

• Understanding transferability (covered in Qing’s lecture)

• Imbalanced learning

• Incremental learning

• etc.
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Learned Low-dimensional Features: Macro View Exploit NC for improving training efficiency

Exploit NC for Improving Training & Memory I

NC is prevalent, and classifier always converges to a Simplex ETF

• Implication 1: No need to learn the
classifier [Hoffer et al. 2018]

- Just fix it as a Simplex ETF
- Save 8%, 12%, and 53% parameters for
ResNet50, DenseNet169, and ShuffleNet!

• Implication 2: No need of large feature
dimension d

- Just use feature dim. d = #class K (e.g.,
d = 10 for CIFAR-10)

- Further saves 21% and 4.5% parameters for
ResNet18 and ResNet50!
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Learned Low-dimensional Features: Macro View Exploit NC for improving training efficiency

Exploit NC for Improving Training & Memory II

ResNet50 on CIFAR-10 with different settings

• Learned classifier (default) VS fixed classifier as a simplex ETF

• Feature dim d = 2048 (default) VS d = 10

• Training with small dimensional features and fixed classifiers achieves
on-par performance with large dimensional features and learned
classifiers.
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Learned Low-dimensional Features: Macro View Exploit NC for improving training efficiency

Exploit NC for Improving Training & Memory III
• Class-mean features (CMF) classifier: by NC3 (self-duality), we can
also fix the classifier as the class-mean features during training9

• Achieves on-par performance with learned classifiers (ResNet18 on
CIFAR100)
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Learned Low-dimensional Features: Macro View Exploit NC for improving training efficiency

Exploit NC for Improving Training & Memory IV

• CMF classifier improves Out-of-distribution (OOD) performance for
fine-tuning9

• CMF is simpler to the two-stage approach10

9
Jiang, et al., Zhu, Generalized Neural Collapse for a Large Number of Classes, 2023

10
Kumar, Ananya, et al., Fine-Tuning can Distort Pretrained Features and Underperform Out-of-Distribution, ICLR 2022.
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Is Cross-entropy Loss Essential?

Is cross-entropy loss essential to neural collapse?

We can measure the mismatch between the network output and the
one-hot label in many ways.

Various losses and tricks (e.g., label smoothing, focal loss) have been
proposed to improve network training and performance11

11He et al., Bag of tricks for image classification with convolutional neural networks,
CVPR’19.
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Focal Loss (FL)

Focal loss puts more focus on hard, misclassified examples12

12Lin et al., Focal Loss for Dense Object Detection, CVPR’18.
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Label Smoothing (LS)
Label smoothing replaces the hard label by a soft label13

13Szegedy et al., Rethinking the inception architecture for computer vision, CVPR’16.
Muller, Kornblith, Hinton, When does label smoothing help?, NeurIPS’19.

Zhihui Zhu Low-Dimensional Representations June 08, 2023 54 / 67



Learned Low-dimensional Features: Macro View Exploit NC for understanding the effect of loss functions

Mean-squared Error (MSE) Loss?

Compared with CE, (rescaled) MSE loss produces on par/slightly worse
results for computer vision tasks and on par/slightly better results for NLP
tasks.14

14Hui & Belkin, Evaluation of neural architectures trained with square loss vs cross-entropy in
classification tasks, ICLR 2021.
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Which Loss is the Best to Use?

• Which loss is the best to use is still a mystery
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Which Loss is the Best to Use?

• Which loss is the best to use is still a mystery

• The performance is also affected by the choice of network
architecture, training iterations, dataset, etc.

• All the losses lead to largely identical performance when the network
is sufficiently large and trained longer enough

Zhihui Zhu Low-Dimensional Representations June 08, 2023 57 / 67



Learned Low-dimensional Features: Macro View Exploit NC for understanding the effect of loss functions

Are All Loses Created Equal?—A NC Perspective I

We study them under the unconstrained feature model:

min
{hk,i},W ,b

1

Kn

K∑
k=1

n∑
i=1

L
(
Whk,i + b,yk

)
+ λ∥({hk,i},W , b)∥2F

Contrastive property [Zhou et al.’22] We say a loss function L satisfies the
contrastive property if there exists a scalar function ψ s.t.

1 L
(
z,yk

)
≥ ψ

(∑
j ̸=k(zj − zk)

)
, where the equality holds only when zj = zj′ for

all j, j′ ̸= k;

2 t⋆ = argmint ψ(t) + c|t| is unique for any c > 0 and t⋆ ≤ 0.

Intuition: (1) min ψ
(∑

j ̸=k(zj − zk)
)
contrasts the k-th output zk

simultaneously to all the other outputs, (2) t⋆ ≤ 0 ensures minimizer has
the k-th output zk being its largest entry and hence correct prediction.
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Are All Loses Created Equal?—A NC Perspective II

Contrastive property [Zhou et al.’22] We say a loss function satisfies
the contrastive property if there exists a scalar function ψ such that

1 L
(
z,yk

)
≥ ψ

(∑
j ̸=k(zj − zk)

)
, where the equality holds only

when zj = zj′ for all j, j
′ ̸= k;

2 t⋆ = argmint ψ(t) + c|t| is unique for any c > 0 and t⋆ ≤ 0.

CE, FL and LS all satisfy the contrastive property.

Theorem (informal) [Zhou et al.’22] With feature dim. d ≥
#class K − 1, all the losses with contrastive property lead to the
same global solutions: NC features and classifiers.
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Are All Loses Created Equal?—A NC Perspective III

Theorem (informal) With feature dim. d ≥ #class K − 1, all the
one-hot labeling based losses (e.g., CE, FL, LS, MSE) lead to (al-
most) the same NC features and classifiers [Han et al’21, Tirer & Bruner’22,

Zhou’22].

Implication for practical networks If network is large enough and
trained longer enough

• All losses lead to largely identical features on training
data—NC phenomena

• All losses lead to largely identical performance on test data
(experiments in the following slides)
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Are All Loses Created Equal?—A NC Perspective IV

ResNet50 on CIFAR-10 with different training losses

• NC across different training losses
• If network is large enough and trained longer enough

- All losses lead to largely identical features on training data—NC
phenomena

- All losses lead to largely identical performance on test data
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Are All Loses Created Equal?—A NC Perspective V
ResNet50 (with different network widths and training epoches) on
CIFAR-10 with different training losses

• Right top corners not only have better performance, but also have
smaller variance than left bottom corners

• If network is large enough and trained longer enough
- All losses lead to largely identical features on training data—NC
phenomena

- All losses lead to largely identical performance on test data
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Progressive separation from shallow to deep layers

• How the data are progressively separated across the layers?15

NC1 = trace(ΣWΣ†
B)

within-class covariance ΣW

between-class covariance ΣB

• Effect of depths: create progressive separation and concentration
(geometric decay of NC1)

15V. Papyan, Traces of class/cross-class structure pervade deep learning spectra, JMLR,
2021. He & Su, A Law of Progressive Separation for Deep Learning, 2022.
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Progressive separation from shallow to deep layers

• Progressive separation is robust to distribution shift.

- Pretrained on CIFAR10

- Evaluate layer-wise NC on
CIFAR10 training (blue),
CIFAR10 testing (green),
& CIFAR10.2 testing (red)
[Lu’20]

- Model is fixed without
fine-tuning

• Observe similar trend of progressive separation and collapse

• Distribution shift causes slightly less collapse (worse performance)
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Progressive separation from shallow to deep layers

• Progressive separation is transferable among different tasks

- ResNet-34 pre-trained on
ImageNet

- Evaluate on CIFAR10

- Model is fixed without
fine-tuning

- Train a linear classifier on
top of the features

• Layer-wise NC exhibits two phases on downstream tasks:
• Phase 1: progressively decreasing (universal feature mapping)
• Phase 2: progressively increasing (specific feature mapping)

• Projection heads and fine-tuning help transferability [Qing’s talk]
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Take-home Message

• Learned features exhibit low-dimensional structures in different
aspects (sparse activations and neural collapse properties)

• These structures can be exploited to understand and improve network
performance
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Call for Papers

IEEE JSTSP Special Issue on Seeking Low-dimensionality in Deep
Neural Networks (SLowDNN)
Manuscript Due: November 30, 2023 https://signalprocessingsociety.org/sites/

default/files/uploads/special_issues_deadlines/JSTSP_SI_seeking_low.pdf

Conference on Parsimony and Learning (CPAL) https://cpal.cc/
January 2024, Hongkong
Manuscript Due: August 28, 2023

Thank You! Questions?

https://signalprocessingsociety.org/sites/default/files/uploads/special_issues_deadlines/JSTSP_SI_seeking_low.pdf
https://signalprocessingsociety.org/sites/default/files/uploads/special_issues_deadlines/JSTSP_SI_seeking_low.pdf
https://cpal.cc/
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