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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Low-rank Matrix Completion

We observe:

Y
Observed ratings

= PΩ

!
X

Complete ratings

"
.

Matrix completion
via bilinear low-rank factorization

min
U ,V

f(U ,V ) =
#

(i,j)∈Ω
[(UV ∗)i,j − Yi,j ]

2 +
λ

2
‖U‖2F +

λ

2
‖V ‖2F

$ %& '
reg(U ,V )

.

‖M‖∗ = min
M=UV ∗

λ
2‖U‖2F + λ

2‖V ‖2F
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Dictionary for Image Representation

Image processing
(e.g. denoising or super-resolution)
against a known sparsifying dictionary:

Inoisy = A
dictionary

× x
sparse

+ z.
noise

(1)

Dictionary learning: the motifs or atoms of the dictionary are unknown:

Y
data

= A
dictionary

X.
sparse

(2)

• Band-limited signals: A = F , the Fourier transform;

• Piecewise smooth signals: A = W , the wavelet transforms;

• Natural images A =? (How to learn A from the data Y ?)
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Convex and Nonconvex Optimization
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Dictionary Learning

Recovered solutions always obtain the same objective value.
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Benign Nonconvex Optimization Landscape

General Case Structured Case
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Sparse Blind Deconvolution

Observation Kernel A0 Natural Image 

Observation Y Kernel A0 Activation Map X0

Sparse Blind Deconvolution:
the convolutional motif or sparse
activation signal are unknown:

Y
data

= A
motif

∗ X.
sparse

(3)

• Scientific signals:
activation signals are sparse

• Image deblurring:
natural images are
sparse in the gradient domain
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Sparse Blind Deconvolution

Recovered solutions are near signed shift-truncations of the ground
truth.

Yuqian Zhang Nonconvex Optimization June 7, 2023 8 / 40



Introduction & Motivation of Nonconvex Optimization Motivating Examples

Convolutional Dictionary learning

Y
data

=
#

i

Ai
motif

∗ Xi.
sparse

Recovered solutions are near signed shift-truncations of the ground
truth.
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Challenges of Nonconvex Optimization – Pessimistic Views

Consider the problem of minimizing
a general nonlinear function:

min
z

ϕ(z), z ∈ C. (4)

In the worst case, even finding
a local minimizer can be NP-hard1.

Hence typically people
seek to work with relatively benign
functions with benign guarantees:

1 convergence to some critical point z̄ such that ∇ϕ(z̄) = 0;

2 or convergence to some local minimizer ∇2ϕ(z̄) ≽ 0.

1Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Opportunities – Optimistic Views

However, nonconvex
problems that arise from
natural physical, geometrical,
or statistical origins typically
have nice structures,
in terms of symmetries!

The function ϕ is invariant
under certain group action:

• for low rank matrix recovery, invariant under a continuous rotation:

ϕ((UΓ,V Γ−1)) = ϕ((U ,V )), ∀ invertible Γ.

• for dictionary learning, invariant under signed permutations:

ϕ((A,X)) = ϕ((AΠ,Π∗X)), ∀Π ∈ SP(n).
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Nonlinearity and Symmetry

Intrinsic ambiguity against the uniqueness of the solution

• low rank matrix recovery

X = U0V
T
0 = U0ΓΓ

−1V T
0

for any invertible Γ.

• dictionary learning

Y = A0X0 = A0ΠΠ∗X0

for any signed permutation Π.

• blind deconvolution

y = a0 ∗ x0 = Sτ [a0] ∗ S−τ [x0]

for any signed shift τ .
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Optimization under Symmetry

Definition (Symmetric Function)

Let G be a group acting on Rn. A function ϕ : Rn → Rn′
is G-symmetric

if for all z ∈ Rn, g ∈ G, ϕ(g ◦ z) = ϕ(z).

Most symmetric objective functions that
arise in structured signal recovery do not
have spurious local minimizers or flat
saddles.

Slogan 1: the (only!) local minimizers are symmetric versions of
the ground truth.
Slogan 2: any local critical point has negative curvature in direc-
tions that break symmetry.
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Basic Calculus

Critical points or stationary points: gradient vanishes

• convex function: critical point = minimizer

• nonconvex function: not all critical points are minimizers
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Basic Calculus

Critical points with non-singular hessian

• minimizer: hessian is positive definite

• saddle points: hessian has both positive and negative eigenvalues

• maximizer: hessian is negative definite
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Problems with Rotational Symmetry
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low rank matrix recovery
Goal: Given Y = A(X), recover low rank matrix X = U0V0

• Convex Formulation

min
X∈Rm×n

‖X‖# s.t. Y = A(X)

• Nonconvex Formulation

min
U∈Rm×r,V ∈Rn×r

((Y −A(UV T )
((2
F
+ reg(U ,V )
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

min
U ,V

1

2

((Y −A(UV T )
((2
F
+ reg(U ,V )

Inherent Symmetry:

X = U0V
T
0 = U0ΓΓ

−1V T
0

for any invertible Γ ∈ Rr×r.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

min
U ,V

1

2

((Y −A(UV T )
((2
F
+ reg(U ,V )

Inherent Symmetry:

X = U0V
T
0 = U0ΓΓ

−1V T
0

for any invertible Γ ∈ Rr×r.

• Are
)
U0Γ,V0Γ

−1
*
the only local solutions?

• Does there exist any flat stationary point?
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Rank-1 Symmetric Matrix

Simplifications:

• Y = A(X) = X

• X = U0U
T
0 is symmetric and rank-1

X = u0u
T
0 = (−u0)(−uT

0 )

the rotational symmetry is reduced to sign symmetry.

Nonconvex formulation:

min
u

φ(u)
.
=

1

4

((X − uuT
((2
F
+ λ ‖u‖22$ %& '

const
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Rank-1 Symmetric Matrix

min
u

φ(u)
.
=

1

4

((X − uuT
((2
F

Critical points have zero gradient

∇φ = (uuT −X)u

= ‖u‖22 u−Xu

= 0

therefore critical points must be one of the following

• u = ±u0

• u = 0
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Rank-1 Symmetric Matrix

min
u

φ(u)
.
=

1

4

((X − uuT
((2
F

with the second order derivative

∇2φ = 2uuT + ‖u‖22 I −X.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Rank-1 Symmetric Matrix

min
u

φ(u)
.
=

1

4

((X − uuT
((2
F

with the second order derivative

∇2φ = 2uuT + ‖u‖22 I −X.

Then the stationary points can be grouped as

• Local minimizer u = ±u0 and uuT = X

∇2φ = uuT + ‖u‖22 I.

• Maximizer u = 0

∇2φ = −X.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

Symmetric low rank matrix

min
U

φ(u)
.
=

1

4

((X −UUT
((2
F
.

General low rank matrix recover

min
U ,V

φ(u)
.
=

1

2

((X −UV T
((2
F
+ λ ‖U‖2F + λ ‖V ‖2F .

Local minimizers: are ground truth U0 and V0 up to rotation;
Negative curvature: between multiple local minimizers.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Problems with Discrete Symmetry
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Dictionary Learning
Goal: Given dataset Y , find the optimal dictionary A that renders the
sparsest coefficient X

min
A,X

‖X‖1 s.t. Y = AX.

In presence of noise, the optimization problem can be rewritten as

min
A,X

1

2
‖Y −AX‖2F + λ ‖X‖1 .

Inherent Symmetry:

Y = A0ΓΓ
∗X0,

for any signed permutation matrix Γ.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning

• Input: matrix Y which is the product of an orthogonal matrix A0

(called a dictionary) and a sparse matrix X0:

Y = A0X0, A0A
∗
0 = I,X0 sparse.

• Optimization Formulation

min
A,X

‖X‖1 s.t. Y = AX, AA∗ = I.

• Given the optimization constraint, X is uniquely defined in terms of
A

X = A∗AX = A∗Y .

• Equivalent formulation

min
A∈O(n)

‖A∗Y ‖1 .

Yuqian Zhang Nonconvex Optimization June 7, 2023 25 / 40



Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning

Instead of aiming to solve the entire matrix A = [a1, . . . ,an] at once via

min
A∈O(n)

‖A∗Y ‖1 .

A simpler model problem solves for the columns ai one at a time

min
‖a‖2=1

‖a∗Y ‖1 .

Stationary Points:

• a = ±ai, then the Hessian is positive definite

• a =
+

i∈I ± 1√
|I|
ai, there exist negative curvatures alone ai(i ∈ I)
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Orthogonal Dictionary Learning — Geometry

Local minimizers are ground truth ai or −ai.
Negative curvature between multiple local minimizers.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Short-and-Sparse Blind Deconvolution

Goal: Given convolutional data y, find the short signal a and the sparse
signal x such that y = a ∗ x.

Inherent Symmetry:

y = a0 ∗ x0 = αsl[a0] ∗
1

α
s−l[x0]

for any shift l and nonzero scaling.

The practical optimization problem can be written as

min
‖a‖2F=1,x

1
2 ‖y − a ∗ x‖2F + λ ‖x‖1 .
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Objective Function – Near One Shift

Sp−1 ∩ {a ∈ Sp−1 | ‖a− sℓ[a0]‖2 ≤ r}

sℓ[a0]

ϕρ(a)

Objective function is strongly convex near a shift sℓ[a0] of the ground
truth.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Objective Function – Linear Span of Two Shifts

sℓ2 [a0]

sℓ1 [a0]

S{ℓ1,ℓ2}

Subspace S{ℓ1,ℓ2} = {αℓ1sℓ1 [a0] + αℓ2sℓ2 [a0] | αℓ1 ,αℓ2 ∈ R}.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Objective Function – Linear Span of Two Shifts

sℓ2 [a0]

sℓ1 [a0]

S{ℓ1,ℓ2}

S{ℓ1,ℓ2} ∩ Sp−1

ϕρ(a)

Local minimizers are near signed shifts ±sℓ[a0].
Negative curvature between two shifts sℓ1 [a0], sℓ2 [a0].
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Objective Function – Multiple Shifts

S{ℓ1,ℓ2,ℓ3} ∩ Sp−1

sℓ1 [a0]

sℓ2 [a0]sℓ3 [a0]

ϕρ(a)

Objective ϕρ over the linear span Sℓ1,ℓ2,ℓ3 = {
+3

i=1 αℓisℓi [a0]}
Local minimizers are near signed shifts ±sℓi [a0].
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Symmetry and Nonconvexity

• the (only!) local minimizers are symmetric versions of the ground
truth.

• there is negative curvature in directions that break symmetry.
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Nonconvex Optimization

Consider the problem of
minimizing a general nonconvex function:

min
x

f(x), x ∈ C. (5)

In the worst case, even finding
a local minimizer can be NP-hard2.

Nonconvex problems that
arise from natural physical, geometrical,
or statistical origins typically have
nice structures, in terms of symmetries!

2Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Objectives
Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions:

∀x,y ‖∇f(y)−∇f(x)‖2 ≤ L1‖y − x‖2 (6)

with benign objectives:

1 convergence to some critical point x# such that: ∇f(x#) = 0;

2 the critical point x# is second-order stationary: ∇2f(x#) ≽ 0.

Example: a function ϕ with symmetry only has regular critical points,
while general f could have irregular second-order stationary points:
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

“Any Reasonable Algorithm” Works

Key issue: using negative curvature
λmin(Hessf) < 0

to escape saddles.
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

“Any Reasonable Algorithm” Works

Key issue: using negative curvature
λmin(Hessf) < 0

to escape saddles.
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Efficient (polynomial time) methods:
Trust region method, analyses in [Sun, Qu, W., ’17]
Curvilinear search, [Goldfarb, Mu, W., Zhou, ’16]

Noisy (stochastic) gradient descent, [Jin et. al. ’17].
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

“Any Reasonable Algorithm” Works

Key issue: using negative curvature
λmin(Hessf) < 0

to escape saddles.
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SADDLE POINTS

. .

Efficient (polynomial time) methods:
Trust region method, analyses in [Sun, Qu, W., ’17]
Curvilinear search, [Goldfarb, Mu, W., Zhou, ’16]

Noisy (stochastic) gradient descent, [Jin et. al. ’17].

Randomly initialized gradient descent ....
Obtains a minimizer almost surely [Lee et. al. ’16].

Efficient for matrix completion, dictionary learning, . . . not efficient in general.
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Worst Case vs. Naturally Occurring Strict Saddle Functions

Worst Case
[Du, Jin, Lee, Jordan, Poczos, Singh ’17]
Concentration around stable manifold
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Naturally Occuring
DL, Other sparsification problems

Dispersion away from stable manifold
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Worst Case vs. Naturally Occurring Strict Saddle Functions

• Red: “slow region” of
small gradient around a
saddle point.

• Green: stable manifold
associated with the
saddle point.

• Black: points that flow
to the slow region.

• Left: global negative curvature normal to the stable manifold

• Right: positive curvature normal to the stable manifold – randomly
initialized gradient descent is more likely to encounter the slow region.

.
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Gradient Descent Works for DL and Related Problems
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Gradient Descent Works for DL and Related Problems
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Dispersive structure: Negative curvature ⊥ stable manifolds.

W.h.p. in random initialization q(0) ∼ uni(Sn−1), convergence to a
neighborhood of a minimizer in polynomial iterations. [Gilboa,
Buchanan, W. ’18]Yuqian Zhang Nonconvex Optimization June 7, 2023 39 / 40



Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Conclusion and Coming Attractions

For Nonconvex, Sparse and Low-rank problems

• Benign Geometry:

• The only local minimizers are symmetric copies of the ground truth
• There exist negative curvatures breaking symmetry

• Efficient Algorithms:
• gradient descent algorithms always suffice
• proximal, projection, acceleration steps can be transferred over

Thank You! Questions?

Yuqian Zhang Nonconvex Optimization June 7, 2023 40 / 40


