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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Low-rank Matrix Completion
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Matrix completion
via bilinear low-rank factorization
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Example: Dictionary for Image Representation

Image processing
(e.g. denoising or super-resolution)
against a known sparsifying dictionary:

Inoisy = A X @ + z. (1)
dictionary sparse noise

Dictionary learning: the motifs or atoms of the dictionary are unknown:

Y = A X. (2)
data dictionary sparse

® Band-limited signals: A = F, the Fourier transform;

® Piecewise smooth signals: A = W, the wavelet transforms;

® Natural images A =7 (How to learn A from the data Y'7)
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Convex and Nonconvex Optimization
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Dictionary Learning

0 10 20 3 4w 5 6 70 6w e 10 o

Recovered solutions always obtain the same objective value.
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Benign Nonconvex Optimization Landscape
General Case Structured Case
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Example: Sparse Blind Deconvolution

Sparse Blind Deconvolution:
the convolutional motif or sparse
activation signal are unknown:

Observation Y Kernel Ao Activation Map Xo
= A « X. (3)

data motif sparse

® Scientific signals:
activation signals are sparse

Observation Kernel Ao Natural Image

® Image deblurring:
natural images are
sparse in the gradient domain
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Sparse Blind Deconvolution

Recovered solutions are near signed shift-truncations of the ground
truth.
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Introduction & Motivation of Nonconvex Optimization Motivating Examples

Convolutional Dictionary learning

data y motif sparse

Recovered solutions are near signed shift-truncations of the ground
truth.
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Challenges of Nonconvex Optimization — Pessimistic Views

Consider the problem of minimizing
a general nonlinear function:

ming(z), zeC  (4) ‘

In the worst case, even finding
a local minimizer can be NP-hard?!.

Spurious local minimizers Flat saddle points

Hence typically people
seek to work with relatively benign
functions with benign guarantees:

@ convergence to some critical point Z such that Vo(z) = 0;

@® or convergence to some local minimizer V2¢(z) = 0.

!Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
TRy



Opportunities — Optimistic Views
or statistical origins typically

have nice structures, g

in terms Of symm etries I Rotational symmetry Discrete symmetry

However, nonconvex
problems that arise from
natural physical, geometrical,

The function ¢ is invariant
under certain group action:

® for low rank matrix recovery, invariant under a continuous rotation:

o((UT,VI™Y) = o((U,V)), Vinvertible T.

e for dictionary learning, invariant under signed permutations:
¢((A, X)) = ¢((AILIT" X)), VIL € SP(n).
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Nonlinearity and Symmetry

Intrinsic ambiguity against the uniqueness of the solution

® |ow rank matrix recovery
X =UpVy = U, T

for any invertible T".

e dictionary learning
Y = Ay X = AIIIT* X,

for any signed permutation IT.
® blind deconvolution

Yy = ap *x xo = Sr[ag] * S_[xo]
for any signed shift .
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Optimization under Symmetry

Definition (Symmetric Function)

Let G be a group acting on R™. A function ¢ : R” — R™ is G-symmetric
if forall z e R, g € G, p(go z) = ¢(2).

Most symmetric objective functions that

arise in structured signal recovery do not

have spurious local minimizers or flat g
saddles.

Rotational symmetry Discrete symmetry

Slogan 1: the (only!) local minimizers are symmetric versions of

the ground truth.
Slogan 2: any local critical point has negative curvature in direc-

tions that break symmetry.
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Introduction & Motivation of Nonconvex Optimization Nonlinearality, Nonconvexity, and Symmetry

Basic Calculus

Critical points or stationary points: gradient vanishes

Convex Non-Convex

Local min

Minimizer Global min

® convex function: critical point = minimizer

® nonconvex function: not all critical points are minimizers

Yugian Zhang Nonconvex Optimization June 7, 2023 14 / 40



Introduction & Motivation of Nonconvex Optimization
Basic Calculus

Critical points with non-singular hessian

® minimizer: hessian is positive definite

® saddle points: hessian has both positive and negative eigenvalues
® maximizer: hessian is negative definite

- -
S —

Minimizer

V2p >0
Noncritical Point (V¢ # 0)

Saddle

Maximizer
Amin V20 < 0 V2p <0
/\maxvch >0
Critical Points (Vy = 0)
Yugian Zhang
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Problems with Rotational Symmetry

Eigenspace Computation

Compute the principal subspace
of a symmetric matrix.

Symmetry: X — XR
G=0(r)

minyx x _y —3trace [ X*AX].

Generalized Phase Retrieval

Recover a complex vector ao from
magnitude measurements y = | Axo|.

ming, §|y* — |Az|?|3.

Symmetry: T — xe'?
G=S'2>0(2)

Nonconvex Problems with Rotational Symmetries

Matrix Recovery

Recover a low-rank matrix X = UV*
from incomplete / corrupted observations

ming v £(Y — AlUV*]) + p(U, V).

Symmetry: (U, V) — (UT,VI~¥)
G = GL(r) or G = O(r)

onvex Optimization
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low rank matrix recovery
Goal: Given Y = A(X), recover low rank matrix X = UyV

Brss .. - 53 ... 5
s ® |22 4| 42 ... 4
57 .7 55 .3
58 a Complete Ratings X
ITtems

Observed (Incomplete) Ratings Y
® Convex Formulation

i X t Y =AX
min X, s (X)

® Nonconvex Formulation

. _ Ty||?
Uermar v ernxr [ =A@Vl + reg@, V)
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Low Rank Matrix Recovery

m
Uv

Y - A@vT

2
e+

reg(U, V)
Inherent Symmetry:

X =UpVy =U, TV

for any invertible T' € R™",

o =3 = E DAl
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

. 1
min 5 |[Y - AUVT)||} + reg(U, V)

Inherent Symmetry:
X =UpVy =U, TV

for any invertible T' € R™",

* Are (UoI', VoI'™!) the only local solutions?

® Does there exist any flat stationary point?
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry
Rank-1 Symmetric Matrix

Simplifications:
*Y =AX)=X
® X = UyU/! is symmetric and rank-1

T T
X = uguy = (—uo)(—up)
the rotational symmetry is reduced to sign symmetry.

Nonconvex formulation:

: .1
min o(u) = 1 | X — uuTHfP + A ul3

const
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry
Rank-1 Symmetric Matrix

. _1 T2
min gZ)(u)—ZHX—uu HF

Critical points have zero gradient

Vo = (uul — X)u
= Jul3u— Xu
=0
therefore critical points must be one of the following
® u = tuy

e 4u=20
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Rank-1 Symmetric Matrix
min  ¢(u)
u

N 1
with the second order derivative

4

2
1% — wu |

V2 = 2uu’ + ||lul51 - X.

o (= = E DAy
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry
Rank-1 Symmetric Matrix

. . 1 T2
min d(u) = 1 HX —uu HF

with the second order derivative
V2 = 2uu’ + ||lul51 - X.

Then the stationary points can be grouped as

¢ Local minimizer u = +ug and uu? = X
2
V2 = uu® + |ul;5 1.
® Maximizer u =0

Vi =—-X.
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Rotational Symmetry

Low Rank Matrix Recovery

Symmetric low rank matrix

. 21 2
min o(u) = 1 | X — UUTHF.

General low rank matrix recover

. 1
min  6(u) = 5 | X —UVT|L + A UL+ AV

)

Local minimizers: are ground truth Uy and Vjy up to rotation;
Negative curvature: between multiple local minimizers.
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Symmetry & Geometry for Nonconvex Problems in Practice

Problems with Discrete Symmetry

Nonconvex Problems with Discrete Symmetries

Eigenvector Computation

Maximize a quadratic form
over the sphere.

R Y
Symmetry: x — —x
G={£1}

Tensor Decomposition
Determine components a; of an orthogonal
decomposable tensor T = 3, a; ® a; ® a; ® a;

maxxeo(n) 2; T(®i, Ti, Ti, ).

Symmetry: X — XT'
G =P(n)

Dictionary Learning

Approximate a given matrix Y
asY ~ AX, with X sparse

min gea,x Y — AX[% + X1
Symmetry: (A, X) — (AT, XT*)
G =SP(n)

Short-and-Sparse Deconvolution
Recover a short a and a sparse @
from their convolution y = @ * .

minae 5y —ax*z|} + Al

Symmetry: (a, @) — (as-[a], @~ 1s_.[])
G = Zn x Ry 0r G = Zy x {1}

=] (=)

Nonconvex Optimization




Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Dictionary Learning

Goal: Given dataset Y, find the optimal dictionary A that renders the
sparsest coefficient X

min || X[, st Y =AX.
A X

)

In presence of noise, the optimization problem can be rewritten as
1 2
i —|Y —AX AMX -
g 2” 7+ AX
Inherent Symmetry:
Y = A)IT* X,

for any signed permutation matrix .
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T D e e
Orthogonal Dictionary Learning

® Input: matrix Y which is the product of an orthogonal matrix Ay
(called a dictionary) and a sparse matrix Xo:

Y = A()Xo, AoAS = I, X(] sparse.
® Optimization Formulation

min || X, st Y =AX, AA"=1I.
A X

)

® Given the optimization constraint, X is uniquely defined in terms of
A

X =A"AX = A'Y.
® Equivalent formulation

min  [|A'Y|,.
AcO(n)
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T D e e
Orthogonal Dictionary Learning

Instead of aiming to solve the entire matrix A = [a1, ..., a,] at once via
min  ||[AYY|];.
AcO(n)

A simpler model problem solves for the columns a; one at a time

min  ||a*Y];.
lall,=1
Stationary Points:
® g = *ta;, then the Hessian is positive definite

*a=3 . +—L_a,, there exist negative curvatures alone a;(i € I)

Vil
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Orthogonal Dictionary Learning — Geometry
Local minimizers are ground truth a; or —a;.
Negative curvature between multiple local minimizers.

Yugian Zhang
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Symmetry & Geometry for Nonconvex Problems in Practice Problems with Discrete Symmetry

Short-and-Sparse Blind Deconvolution

Goal: Given convolutional data y, find the short signal a and the sparse
signal @ such that y = a * «.

Inherent Symmetry:

1
Y = ag x xy = aslag] * as_l[cco] T ]

for any shift [ and nonzero scaling.

N
I

The practical optimization problem can be written as

min 3y —axz|f+ A,
lal=1.2
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Symmetry & Geometry for Nonconvex Problems in Practice

Objective Function — Near One Shift

SPtn{a €SPt | ||a — sefag]|2 < r}
truth.

Objective function is strongly convex near a shift sy[ag] of the ground

Yugian Zhang
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Objective Function — Linear Span of Two Shifts

El)

Yugian Zhang

Subspace S, 1,1 = {au, s¢, [@o] + ag,se,[ao] | ag,, ap, € R}

Nonconvex Optimization

DA




Symmetry & Geometry for Nonconvex Problems in Practice

Objective Function — Linear Span of Two Shifts

Local minimizers are near signed shifts +sy[ay].
Negative curvature between two shifts sy, [ao], s¢,[ao].

Yugian Zhang

Nonconvex Optimization



Objective Function — Multiple Shifts

S{Zl ;£27£3} m Sp_l

Yugian Zhang

Objective @, over the linear span Sp, 1,0, = {30, v, 5¢,[a@o]}
Local minimizers are near signed shifts +sy, [ao].

Nonconvex Optimization




Symmetry and Nonconvexity
¢ the (only!) local minimizers are symmetric versions of the ground
truth.

® there is negative curvature in directions that break symmetry.

Rotational symmetry

Discrete symmetry
o (= = £ A
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Nonconvex Optimization

Consider the problem of

minimizing a general nonconvex function:
min f(x), «e€C. ‘
€T
In the worst case, even finding

a local minimizer can be NP-hard?. Spurious local minimizers Flatsaddle points
Nonconvex problems that
arise from natural physical, geometrical,
or statistical origins typically have ' ‘
nice structures, in terms of symmetries!

Roationa syminetey ——

2Some NP-complete problems in quadratic and nonlinear programming, K.G Murty
and S. N. Kabadi, 1987
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Objectives
Hence typically people seek to work with relatively benign
(gradient/Hessian Lipschitz continuous) functions:

Ve,y (IVF(y) = Vi@)l2 < Lilly — |2 (6)

with benign objectives:
@ convergence to some critical point x, such that: Vf(x,) = 0;
@ the critical point x, is second-order stationary: V2 f(x,) = 0.

Example: a function ¢ with symmetry only has regular critical points,
while general f could have irregular second-order stationary points:

- iy W

Minimizer Saddle Maximizer
Vip >0 Amin V29 < 0 V3 <0
Amax V20 > 0
Noncritical Point (V # 0) Critical Points (V¢ = 0)
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Objectives of Nonconvex Optimization
“Any Reasonable Algorithm” Works

Key issue: using negative curvature
Amin (Hessf) < 0
to escape saddles.
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Objectives of Nonconvex Optimization
“Any Reasonable Algorithm” Works

Key issue: using negative curvature
Amin (Hessf) < 0
to escape saddles.

Efficient (polynomial time) methods:
Trust region method, analyses in [Sun, Qu, W., '17]
Curvilinear search, [Goldfarb, Mu, W., Zhou, '16]

Noisy (stochastic) gradient descent, [Jin et. al. '17].

Yugian Zhang Nonconvex Optimization June 7, 2023 36 / 40



Objectives of Nonconvex Optimization
“Any Reasonable Algorithm” Works

Key issue: using negative curvature
Amin (Hessf) < 0
to escape saddles.

Efficient (polynomial time) methods:
Trust region method, analyses in [Sun, Qu, W., '17]
Curvilinear search, [Goldfarb, Mu, W., Zhou, '16]

Noisy (stochastic) gradient descent, [Jin et. al. '17].

Randomly initialized gradient descent ....
Obtains a minimizer almost surely [Lee et. al. '16].

Efficient for matrix completion, dictionary learning, ... not efficient in general.
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Objectives of Nonconvex Optimization
Worst Case vs. Naturally Occurring Strict Saddle Functions

50
5 >
;é 0
>
o -50
2z
©
£.-100
o 20
-150 0
20 .
10 0 10 20 20
X *2
1
Worst Case Naturally Occuring
[Du, Jin, Lee, Jordan, Poczos, Singh '17] DL, Other sparsification problems
Concentration around stable manifold Dispersion away from stable manifold
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Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Worst Case vs. Naturally Occurring Strict Saddle Functions

® Red: “slow region” of
small gradient around a
saddle point.

® Green: stable manifold

associated with the
saddle point.

® Black: points that flow
to the slow region.

® | eft: global negative curvature normal to the stable manifold

® Right: positive curvature normal to the stable manifold — randomly
initialized gradient descent is more likely to encounter the slow region.
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Efficient Nonconvex Optimization

Gradient Descent Works for DL and Related Problems

cel 1|
3
H

m] = = =
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Objectives of Nonconvex Optimization
Gradient Descent Works for DL and Related Problems

Dispersive structure: Negative curvature | stable manifolds.

W.h.p. in random initialization q(®) ~ uni(S*~!), convergence to a

neighborhood of a minimizer in polynomial iterations. [Gilboea,
June 7,2023 39 /40



Efficient Nonconvex Optimization Objectives of Nonconvex Optimization

Conclusion and Coming Attractions

For Nonconvex, Sparse and Low-rank problems
® Benign Geometry:

® The only local minimizers are symmetric copies of the ground truth
® There exist negative curvatures breaking symmetry

o Efficient Algorithms:

® gradient descent algorithms always suffice
® proximal, projection, acceleration steps can be transferred over

Thank You! Questions?
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