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“Everything should be made as simple as possible,
but not any simpler.”

– Albert Einstein
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Objectives for Learning from Data Precursors and Motivations

ISTA: Sparse Recovery via ℓ1 (Wright and Ma, 2022)
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Objectives for Learning from Data Precursors and Motivations

Learned ISTA (Gregor and LeCun, ICML 2010)

Learning fast approximations of sparse coding, K. Gregor and Y. LeCun, ICML 2010.
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Objectives for Learning from Data Precursors and Motivations

Sparsity: ℓ0 or ℓ1 Minimization versus ℓ4 Maximization

Given Y = AX, find A such that X is the sparsest:

min
A
∥X∥0, X

.
= AY , s.t. A ∈ O(n;R). (1)

Figure: ℓ1-,ℓ2-, and ℓ4-spheres in R2

Maximizing ℓ4 norm promotes
sparsity or sparsity (spikiness):

argmax
q∈Sn

∥q∥4 ⇔ argmin
q∈Sn

∥q∥0 .
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Objectives for Learning from Data Precursors and Motivations

Sparse Dictionary Learning via ℓ4: the MSP Algorithm

Solve a sparsifying transform A for X = AY by solving the program:

max
A

ϕ(A)
.
= ∥AY ∥44 , s.t. A ∈ O(n;R), (2)

via projected gradient descent: At+1 = PO(n)[At + α∇Aϕ(At)].

The Matching, Stretching, and Projection (MSP) Algorithm:

1: Initialize A0 ∈ O(n,R) initialize A0 for iteration
2: for t = 0, 1, ...
3: ∇Aϕ(At) = 4(AtY )◦3Y ∗ Matching and Stretching
4: UΣV ∗ = SVD[∇Aϕ(At)]
5: At+1 = UV ∗ Project A onto orthogonal group
6: end for
7: output: A⋆.

Complete dictionary learning via L4-Norm maximization over the orthogonal group, Zhai

et. al. JMLR 2020.
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Objectives for Learning from Data Precursors and Motivations

“Deep Networks” as Power Iteration for Low-Dim
“Fixed point” (not gradient descent) interpretation:

At+1 = PO(n)[∇Aϕ(At)] = PO(n)[(AtY )◦3Y ∗].

Define “layer” operators and states iteratively:

δAt+1
.
= At+1A

∗
t and Zt+1

.
= At+1Y = δAt+1Zt.

Forward-constructed “deep network” interpretation:

δAt+1 = PO(n)[(Zt)
◦3Z∗

t ], X ← δAt+1δAt · · · δA1Y .

Table: Fixed Points: PCA (Power iteration), ICA (FastICA), and DL (MSP).

Objectives Constraint Sets Algorithms

Power Iter. φ(a)
.
= 1

2
∥a∗Y ∥22 w ∈ Sn−1 at+1 = PSn−1 [∇aφ(at)]

FastICA ψ(a)
.
= 1

4
kurt[a∗y] a ∈ Sn−1 at+1 = PSn−1 [∇aψ(at)]

MSP ϕ(A)
.
= 1

4
∥A∗Y ∥44 A ∈ St(k, n;R) At+1 = PSt(k,n;R) [∇Aϕ(At)]
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Objectives for Learning from Data Precursors and Motivations
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Objectives for Learning from Data Precursors and Motivations

Pursuit of Sparsity via Transformer Layers
[Vaswani et al., 2017, Dosovitskiy et al., 2020] (see Sam Buchanan’s lecture)

Published as a conference paper at ICLR 2021
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3 METHOD

In model design we follow the original Transformer (Vaswani et al., 2017) as closely as possible.
An advantage of this intentionally simple setup is that scalable NLP Transformer architectures – and
their efficient implementations – can be used almost out of the box.

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x 2 RH⇥W⇥C into a
sequence of flattened 2D patches xp 2 RN⇥(P 2·C), where (H, W ) is the resolution of the original
image, C is the number of channels, (P, P ) is the resolution of each image patch, and N = HW/P 2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z0

0 = xclass), whose state at the output of the Transformer encoder (z0
L) serves as the

image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0

L. The classification head is implemented by a MLP with one hidden layer at pre-training
time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

3

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q, K, V ) = softmax(
QKT

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

A = Softmax (qk⊤/ Dh)
Earlier 

Layers

Later 

Layers

“Attention” matrix
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Objectives for Learning from Data Precursors and Motivations

High-Dim Data with Mixed Nonlinear Low-Dim Structures

Figure: High-dimensional Real-World Data: data samples X = [x1, . . . ,xm] in
RD lying on a mixture of low-dimensional submanifolds X ⊂ ∪kj=1Mj ⊂ RD.

RD

M

M1

M2

Mj

The main objective of learning from (samples of) such real-world data:

seek a most compact and structured representation of the data.
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Objectives for Learning from Data Precursors and Motivations

Fitting Class Labels via a Deep Network
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Figure: Black Box DNN for Classification: y is the class label of x represented
as a “one-hot” vector in Rk. To learn a nonlinear mapping f(·, θ) : x 7→ y, say
modeled by a deep network, using cross-entropy (CE) loss.

min
θ∈Θ

CE(θ,x,y)
.
= −E[⟨y, log[f(x, θ)]⟩] ≈ − 1

m

m∑

i=1

⟨yi, log[f(xi, θ)]⟩. (3)

Prevalence of neural collapse during the terminal phase of deep learning training,

Papyan, Han, and Donoho, 2020.
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Objectives for Learning from Data Precursors and Motivations

Fitting Class Labels via a Deep Network

In a supervised setting, using cross-entropy (CE) loss:

min
θ∈Θ

CE(θ,x,y)
.
= −E[⟨y, log[f(x, θ)]⟩] ≈ − 1

m

m∑

i=1

⟨yi, log[f(xi, θ)]⟩. (4)

Figure: [Zhang et al, ICLR’17]

Issues (an elephant in the room):

• A large deep neural networks can
fit arbitrary data and labels.

• Statistical and geometric meaning
of internal features not clear.

• Task/data-dependent and
not robust nor truly invariant.

What did machines actually “learn” from doing this?
In terms of interpolating, extrapolating, or representing the data?
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Objectives for Learning from Data Precursors and Motivations

A Hypothesis: Information Bottleneck
[Tishby & Zaslavsky, 2015]

A feature mapping f(x, θ) and a classifier g(z) trained for downstream
classification:

x
f(x,θ)−−−−−−→ z(θ)

g(z)−−−−→ y.

The IB Hypothesis: Features learned in a deep network trying to

max
θ∈Θ

IB(x,y, z(θ))
.
= I(z(θ),y)− βI(x, z(θ)), β > 0, (5)

where I(z,y)
.
= H(z)−H(z|y) and H(z) is the entropy of z.

• Minimal informative features z that most correlate with the label y

• Task and label-dependent, consequently sacrificing generalizability,
robustness, or transferability
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Objectives for Learning from Data Precursors and Motivations

Gap between Theory and Practice (a Bigger Elephant)

For high-dimensional real data,
many statistical and information-theoretic concepts such as entropy,
mutual information, K-L divergence, and maximum likelihood:

• curse of dimensionality for computation.

• ill-posed for degenerate distributions.

• lack guarantees with finite (or non-asymptotic) samples.

Reality check: principled formulations are replaced with approximate bounds,

grossly simplifying assumptions, heuristics, even ad hoc tricks and hacks.

How to provide any performance guarantees at all?
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Objectives for Learning from Data Precursors and Motivations

A Principled Computational Approach

For high-dim data with mixed low-dim structures:

learn to compress, and compress to learn!

b) noisy samples c) noisy samples with outliers a) sample points

oS1

S2 S3 Z = S1 ∪ S2 ∪ S3

Generalized PCA for mixture of subspaces [Vidal, Ma, and Sastry, 2005]
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Objectives for Learning from Data Precursors and Motivations

1. Clustering Mixed Data (Interpolation)

Assume data X = [x1,x2, . . . ,xm]
are i.i.d. samples from a mixture
of distributions: p(x, θ) =

∑k
j=1 πjpj(x, θ).

Classic approaches to cluster the data:
the maximum-likelihood (ML) estimate
via Expectation Maximization (EM):

max
θ,π

E
[
log

( k∑

j=1

πjpj(x, θ)
)]
≈ max

θ,π

1

m

m∑

i=1

log
( k∑

j=1

πjpj(xi, θ)
)
.

Difficulties: ML is not well-defined when distributions are degenerate.
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Objectives for Learning from Data Precursors and Motivations

Clustering via Compression
[Yi Ma, Harm Derksen, Wei Hong, and John Wright, TPAMI’07]

A Fundamental Idea:
Data belong to mixed low-dim
structures should be compressible.

Cluster Criterion:
Whether the number of binary bits
required to store the data is less
(information gain):

#bits(X ∪ Y ) ≥ #bits(X) + #bits(Y )?

“The whole is greater than the sum of the parts.”
– Aristotle, 320 BC
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Objectives for Learning from Data Precursors and Motivations

Coding Length Function for Subspace-Like Data

Theorem (Ma, TPAMI’07)

The number of bits needed to encode data X = [x1,x2, . . . ,xm] ∈ RD×m

up to a precision ∥x− x̂∥2 ≤ ϵ is bounded by:

L(X, ϵ)
.
=

(
m+D

2

)
log det

(
I +

D

mϵ2
XX⊤

)
.

This can be derived from constructively quantifying SVD of X or by
sphere packing vol(X) as samples of a noisy Gaussian source.

Linear subspace Gaussian source
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Objectives for Learning from Data Precursors and Motivations

Cluster to Compress

L(X) ≥ Lc(X)
.
= L(X1) + L(X2) +H(|X1|, |X2|)?

partitioning:

sifting:
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Objectives for Learning from Data Precursors and Motivations

A Greedy Algorithm

Seek a partition of the data X → [X1,X2, . . . ,Xk] such that

minLc(X)
.
= L(X1) + · · ·+ L(Xk) +H(|X1|, . . . , |Xk|).

Optimize with a bottom-up pair-wise merging algorithm [Ma, TPAMI’07]:

1: input: the data X = [x1,x2, . . . ,xm] ∈ RD×m and a distortion ϵ2 > 0.
2: initialize S as a set of sets with a single datum {S = {x} | x ∈X}.
3: while |S| > 1 do
4: choose distinct sets S1, S2 ∈ S such that

Lc(S1 ∪ S2)− Lc(S1, S2) is minimal.
5: if Lc(S1 ∪ S2)− Lc(S1, S2) ≥ 0 then break;
6: else S :=

(
S \ {S1, S2}

)
∪ {S1 ∪ S2}.

7: end
8: output: S
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Objectives for Learning from Data Precursors and Motivations

Surprisingly Good Performance

Empirically, find global optimum and extremely robust to outliers

!!"#
!!"$

!
!"$

!"#

!!"$

!

!"$

!"#

!!"#

!!"$

!

!"$

!"#

A strikingly sharp phase transition w.r.t. quantization ϵ

−8 −6 −4 −2 0
0

50

100

150

200

250

300

350

400

log
10

 ε

K log
10

ε
0

−4 −3 −2 −1
0

1

2

3

log
10

ε

K log
10

ε
0

Yi Ma Design Deep Networks June 7, 2023 21 / 89



Objectives for Learning from Data Precursors and Motivations

Natural Image Segmentation [Mobahi et.al., IJCV’09]

Compression alone, without any supervision, leads to state of the art
segmentation on natural images (and many other types of data).

(a) Animals (b) Buildings (c) Landscape (d) People (e) Water
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Objectives for Learning from Data Precursors and Motivations

2. Classify Mixed Data (Extrapolation)

Assume data X = [x1,x2, . . . ,xm]
are i.i.d. samples from a mixture of
distributions: p(x, θ) =

∑k
j=1 πjpj(x, θ).

Classic approach to classify the data is
via maximum a posteriori (MAP) classifier:

ŷ(x) = argmax
j

log pj(x, θ) + log πj .

Difficulties: distributions pj are hard to estimate and log likelihood is not
well-defined when distributions are degenerate.

(probably why SVMs or deep networks prevail instead...)
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Objectives for Learning from Data Precursors and Motivations

Classify to Compress
[Wright, Tao, Lin, Shum, and Ma, NIPS’07]

A Fundamental Idea:
Count additional #bits needed
to encode a query sample x
with data in each class Xj :

δLϵ(x, j)
.
= Lϵ(Xj∪{x})−Lϵ(Xj)+L(j).

Classification Criterion: Minimum Incremental Coding Length (MICL):

ŷ(x) = argmin
j

δLϵ(x, j).

Law of Parsimony: “Entities should not be multiplied without necessity.”
–William of Ockham
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Objectives for Learning from Data Precursors and Motivations

Asymptotic Property of MICL
Theorem (Wright, NIPS’07)

As the number of samples m goes to infinity, the MICL criterion converges
at a rate of O(m−1/2) to the following criterion:

ŷϵ(x) = argmax
j

LG

(
x | µj ,Σj +

ϵ2

D
I
)
+ log πj

︸ ︷︷ ︸
Regularized MAP

+
1

2
Dϵ(Σj),

where Dϵ(Σj)
.
= tr

(
Σj

(
Σj +

ϵ2

DI
)−1

)
is the effective dimension.

Everything else equal, MICL prefers a
class with higher effective dimension.

Err on the side of caution!
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Objectives for Learning from Data Precursors and Motivations

Extrapolation of Low-Dim Structure for Classification

Figure: A truly extrapolating (nearest subspace) classifier!

(a) MICL (b) k-Nearest Neighbors (c) SVM-RBF

Difficulty in practice: inference computationally costly (non-parametric)
and possibly need a kernel (nonlinearity).

Go beyond (non-parametric) data interpolation and extrapolation?
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Objectives for Learning from Data Linear and Discriminative Representation (LDR)

Represent Multi-class Multi-dimensional Data

f(x, ✓)

RD Rd

M

M1

M2

Mj

xi

S1
S2

Sj

zi

Figure 1: Left and Middle: The distribution D of high-dim data x 2 RD is supported on a manifold M and
its classes on low-dim submanifolds Mj , we learn a map f(x, ✓) such that zi = f(xi, ✓) are on a union of
maximally uncorrelated subspaces {Sj}. Right: Cosine similarity between learned features by our method
for the CIFAR10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions Dj are (or can be made). One popular working assumption is that the
distribution of each class has relatively low-dimensional intrinsic structures.9 Hence we may assume
the distribution Dj of each class has a support on a low-dimensional submanifold, say Mj with
dimension dj ⌧ D, and the distribution D of x is supported on the mixture of those submanifolds,
M = [k

j=1Mj , in the high-dimensional ambient space RD, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, ✓) that maps each of
the submanifolds Mj ⇢ RD to a linear subspace Sj ⇢ Rd (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {Sj} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering
or classification tasks (such as object recognition), we consider two samples as equivalent if they
differ by certain class of domain deformations or augmentations T = {⌧}. Hence, we are only
interested in low-dimensional structures that are invariant to such deformations,10 which are known to
have sophisticated geometric and topological structures [WDCB05] and can be difficult to learn in a
principled manner even with CNNs [CW16, CGW19]. There are previous attempts to directly enforce
subspace structures on features learned by a deep network for supervised [LQMS18] or unsupervised
learning [JZL+17, ZJH+18, PFX+17, ZHF18, ZJH+19, ZLY+19, LQMS18]. However, the self-
expressive property of subspaces exploited by [JZL+17] does not enforce all the desired properties
listed above; [LQMS18] uses a nuclear norm based geometric loss to enforce orthogonality between
classes, but does not promote diversity in the learned representations, as we will soon see. Figure 1
right illustrates a representation learned by our method on the CIFAR10 dataset. More details can be
found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at

9There are many reasons why this assumption is plausible: 1. high dimensional data are highly redundant; 2.
data that belong to the same class should be similar and correlated to each other; 3. typically we only care about
equivalent structures of x that are invariant to certain classes of deformation and augmentations.

10So x 2 M iff ⌧(x) 2 M for all ⌧ 2 T .

3

Given samples
X = [x1, . . . ,xm] ⊂ ∪kj=1Mj ,
seek a good representation
Z = [z1, . . . ,zm] ⊂ Rd

through a continuous mapping:
f(x, θ) : x ∈ RD 7→ z ∈ Rd.

Goals of “re-present” the data:

• compression: from high-dimensional samples to compact features.

• linearization: from nonlinear structures ∪kj=1Mj to linear ∪kj=1Sj .
• sparsity: from separable componentsMj ’s to incoherent Sj ’s.
• self-consistent: from compact structured Z back to the data X.
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Objectives for Learning from Data Linear and Discriminative Representation (LDR)

Seeking a Linear Discriminative Representation (LDR)

Desiderata: Representation z = f(x, θ) have the following properties:

1 Within-Class Compressible: Features of the same class/cluster should
be highly compressed in a low-dimensional linear subspace.

2 Between-Class Discriminative: Features of different classes/clusters
should be in highly incoherent linear subspaces.

3 Maximally Informative: Dimension (or variance) of features for each
class/cluster should be the same as that of the data.

Is there a principled objective for all such properties, together?
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Closed-Form Information-Theoretical Measure for LDR Principle of Maximizing Coding Rate Reduction (MCR2)

Compactness Measure for Linear/Gaussian Representation

Linear subspace Gaussian source

Theorem (Coding Length, Ma & Derksen TPAMI’07)

The number of bits needed to encode data X = [x1,x2, . . . ,xm] ∈ RD×m

up to a precision ∥x− x̂∥2 ≤ ϵ is bounded by:

L(X, ϵ)
.
=

(
m+D

2

)
log det

(
I +

D

mϵ2
XX⊤

)
.

This can be derived from constructively quantifying SVD of X or by
sphere packing vol(X) as samples of a noisy Gaussian source.
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Closed-Form Information-Theoretical Measure for LDR Principle of Maximizing Coding Rate Reduction (MCR2)

Compactness Measure for Linear/Gaussian Representation

If X is not (piecewise) linear or Gaussian, consider a nonlinear mapping:

X = [x1,x2, . . . ,xm] ∈ RD×m f(x,θ)−−−−−−→ Z(θ) = [z1, z2, . . . ,zm] ∈ Rd×m.

The average coding length per sample (rate) subject to a distortion ϵ:

R(Z, ϵ)
.
=

1

2
log det

(
I +

d

mϵ2
ZZ⊤

)
. (6)

Rate distortion is an intrinsic
measure for the volume of all features.
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Closed-Form Information-Theoretical Measure for LDR Principle of Maximizing Coding Rate Reduction (MCR2)

Compactness Measure for Mixed Linear Representations

The features Z of multi-class data

X = X1 ∪X2 ∪ · · · ∪Xk ⊂ ∪kj=1Mj .

may be partitioned into multiple subsets:

Z = Z1 ∪Z2 ∪ · · · ∪Zk ⊂ ∪kj=1Sj .

W.r.t. this partition, the average coding rate is:

Rc(Z, ϵ | Π)
.
=

k∑

j=1

tr(Πj)

2m
log det

(
I +

d

tr(Πj)ϵ2
ZΠjZ

⊤
)
, (7)

where Π = {Πj ∈ Rm×m}kj=1 encode the membership of the m samples
in the k classes: the diagonal entry Πj(i, i) of Πj is the probability of
sample i belonging to subset j. Ω

.
= {Π |∑Πj = I,Πj ≥ 0.}
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Closed-Form Information-Theoretical Measure for LDR Principle of Maximizing Coding Rate Reduction (MCR2)

Measure for Linear Discriminative Representation (LDR)

A fundamental idea: maximize the difference between the coding rate
of all features and the average rate of features in each of the classes:

∆R
(
Z,Π, ϵ) =

1

2
log det

(
I +

d

mϵ2
ZZ⊤

)
︸ ︷︷ ︸

R

−
k∑

j=1

tr(Πj)

2m
log det

(
I +

d

tr(Πj)ϵ2
ZΠjZ

⊤
)

︸ ︷︷ ︸
Rc

.

This difference is called rate reduction (measuring information gain):

• Large R: expand all features Z as large as possible.

• Small Rc: compress each class Zj as small as possible.

Slogan: similarity contracts and dissimilarity contrasts!
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Closed-Form Information-Theoretical Measure for LDR Principle of Maximizing Coding Rate Reduction (MCR2)

Interpretation of MCR2: Sphere Packing and Counting

Example: two subspaces S1 and S2 in R2.

• log#(green spheres + blue spheres) = rate of span of all samples R.

• log#(green spheres) = rate of the two subspaces Rc.

• log#(blue spheres) = rate reduction ∆R.
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Closed-Form Information-Theoretical Measure for LDR Principle of Maximizing Coding Rate Reduction (MCR2)

Comparison to Contrastive Learning
[Hadsell, Chopra, and LeCun, CVPR’06]

When k is large, a randomly chosen pair (xi,xj) is of high probability
belonging to different classes. Minimize the contrastive loss:

min− log
exp(⟨zi, z′

i⟩)∑
j ̸=i exp(⟨zi, zj⟩)

.

The learned features of such pairs of samples together with their
augmentations Zi and Zj should have large rate reduction:

max
∑

ij

∆Rij
.
= R

(
Zi ∪Zj , ϵ

)
− 1

2

(
R(Zi, ϵ) +R(Zj , ϵ)

)
.

MCR2 contrasts triplets, quadruplets, or any number of sets.
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Closed-Form Information-Theoretical Measure for LDR Principle of Maximizing Coding Rate Reduction (MCR2)

Principle of Maximal Coding Rate Reduction (MCR2)
[Yu, Chan, You, Song, Ma, NeurIPS2020]

Learn a mapping f(x, θ) (for a given partition Π):

X
f(x,θ)−−−−−−→ Z(θ)

Π,ϵ−−−−→ ∆R(Z(θ),Π, ϵ) (8)

so as to Maximize the Coding Rate Reduction (MCR2):

max
θ

∆R
(
Z(θ),Π, ϵ

)
= R(Z(θ), ϵ)−Rc(Z(θ), ϵ | Π),

subject to ∥Zj(θ)∥2F = mj , Π ∈ Ω. (9)

Since ∆R is monotonic in the scale of Z, one needs to:
normalize the features z = f(x, θ) so as to compare Z(θ) and Z(θ′)!

Batch normalization, Sergey Ioffe and Christian Szegedy, 2015.

Layer normalization’16, instance normalization’16; group normalization’18...
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Closed-Form Information-Theoretical Measure for LDR Principle of Maximizing Coding Rate Reduction (MCR2)

Theoretical Justification of the MCR2 Principle

Theorem (Informal Statement [Yu et.al., NeurIPS2020])

Suppose Z⋆ = Z⋆
1 ∪ · · · ∪Z⋆

k is the optimal solution that maximizes the
rate reduction (9). We have:

• Between-class Discriminative: As long as the ambient space is
adequately large (d ≥∑k

j=1 dj), the subspaces are all orthogonal to

each other, i.e. (Z⋆
i )

⊤Z⋆
j = 0 for i ̸= j.

• Maximally Informative Representation: As long as the coding
precision is adequately high, i.e., ϵ4 < minj

{mj

m
d2

d2j

}
, each subspace

achieves its maximal dimension, i.e. rank(Z⋆
j ) = dj . In addition, the

largest dj − 1 singular values of Z⋆
j are equal.

A new slogan, beyond Aristotle:
The whole is to be maximally greater than the sum of the parts!
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Closed-Form Information-Theoretical Measure for LDR Experimental Verification

Experiment I: Supervised Deep Learning

Experimental Setup: Train f(x, θ) as ResNet18 on the CIFAR10
dataset, feature z dimension d = 128, precision ϵ2 = 0.5.
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Figure: (a). Evolution of R,Rc,∆R during the training process; (b). Training
loss versus testing loss.
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Closed-Form Information-Theoretical Measure for LDR Experimental Verification

Visualization of Learned Representations Z
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Figure: PCA of learned representations from MCR2 and cross-entropy.

No neural collapse!
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Closed-Form Information-Theoretical Measure for LDR Experimental Verification

Visualization - Samples along Principal Components
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Figure 8: Visualization of principal components learned for class 2-‘Bird’ and class 8-‘Ship’. For each class j,
we first compute the top-10 singular vectors of the SVD of the learned features Zj . Then for the l-th singular
vector of class j, ul

j , and for the feature of the i-th image of class j, zi
j , we calculate the absolute value of inner

product, |hzi
j , u

l
ji|, then we select the top-10 images according to |hzi

j , u
l
ji| for each singular vector. In the

above two figures, each row corresponds to one singular vector (component Cl). The rows are sorted based on
the magnitude of the associated singular values, from large to small.
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(a) 10 representative images from each class based
on top-10 principal components of the SVD of

learned representations by MCR2.
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(b) Randomly selected 10 images from each class.

Figure 9: Visualization of top-10 “principal” images for each class in the CIFAR10 dataset. (a) For each class-j,
we first compute the top-10 singular vectors of the SVD of the learned features Zj . Then for the l-th singular
vector of class j, ul

j , and for the feature of the i-th image of class j, zi
j , we calculate the absolute value of inner

product, |hzi
j , u

l
ji|, then we select the largest one for each singular vector within class j. Each row corresponds

to one class, and each image corresponds to one singular vector, ordered by the value of the associated singular
value. (b) For each class, 10 images are randomly selected in the dataset. These images are the ones displayed in
the CIFAR dataset website [Kri09].

B.3.2 Experimental Results of MCR2 in the Supervised Learning Setting.

Training details for mainline experiment. For the model presented in Figure 1 (Right) and
Figure 3, we use ResNet-18 to parameterize f(·, ✓), and we set the output dimension d = 128,
precision ✏2 = 0.5, mini-batch size m = 1, 000. We use SGD in Pytorch [PGM+19] as the optimizer,
and set the learning rate lr=0.01, weight decay wd=5e-4, and momentum=0.9.

25

Figure: Top-10 “principal” images for class - “Bird” and “Ship” in the CIFAR10.
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Closed-Form Information-Theoretical Measure for LDR Experimental Verification

Experiment II: Robustness to Label Noise
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(c) Rc(Z(θ), ϵ | Π)

Figure: Evolution of R,Rc,∆R of MCR2 during training with corrupted labels.

Represent only what can be jointly compressed.
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White-Box Deep Networks from Optimizing Rate Reduction

Deep Networks from Optimizing Rate Reduction

X
f(x,θ)−−−−−−→ Z(θ); max

θ
∆R(Z(θ),Π, ϵ).

Final features learned by MCR2 are more interpretable and robust, but:

• The borrowed deep network (e.g. ResNet) is still a “black box”!

• Why is a “deep” architecture necessary, and how wide and deep?

• What are the roles of the “linear and nonlinear” operators?

• Why “multi-channel” convolutions?

• · · ·

Replace black box networks with entirely “white box” networks?
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White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

Projected Gradient Ascent for Rate Reduction

Recall the rate reduction objective:

max
Z

∆R(Z)
.
=

1

2
log det

(
I + αZZ∗

)

︸ ︷︷ ︸
R(Z)

−
k∑

j=1

γj
2

log det
(
I + αjZΠjZ∗

)

︸ ︷︷ ︸
Rc(Z,Π)

, (10)

where α = d/(mϵ2), αj = d/(tr(Πj)ϵ2), γj = tr(Πj)/m for j = 1, . . . , k.

Consider directly maximizing ∆R with projected gradient ascent (PGA):

Zℓ+1 ∝ Zℓ + η · ∂∆R

∂Z

∣∣∣∣
Zℓ

subject to Zℓ+1 ⊂ Sd−1. (11)
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White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

Gradients of the Two Terms

The derivatives ∂R(Z)
∂Z and ∂Rc(Z,Π)

∂Z are:

1

2

∂ log det(I + αZZ∗)

∂Z

∣∣∣∣
Zℓ

= α(I + αZℓZ
∗
ℓ )

−1

︸ ︷︷ ︸
Eℓ ∈Rd×d

Zℓ, (12)

1

2

∂
(
γj log det(I + αjZΠjZ∗)

)

∂Z

∣∣∣∣
Zℓ

= γj αj(I + αjZℓΠ
jZ∗

ℓ )
−1

︸ ︷︷ ︸
C

j
ℓ

∈Rd×d

ZℓΠ
j . (13)

Hence the gradient ∂∆R(Z)
∂Z is:

∂∆R

∂Z

∣∣∣∣
Zℓ

= Eℓ︸︷︷︸
Expansion

Zℓ −
k∑

j=1

γj Cj
ℓ︸︷︷︸

Compression

ZℓΠ
j ∈ Rd×m. (14)
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White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

Interpretation of the Linear Operators E and Cj

For any zℓ ∈ Rd, we have

Eℓzℓ = α(zℓ −Zℓq
∗
ℓ ) with q∗ℓ

.
= argmin

qℓ

α∥zℓ −Zℓqℓ∥22 + ∥qℓ∥22.

Eℓzℓ and Cj
ℓzℓ are the “residuals” of zℓ against the subspaces spanned by

columns of Zℓ and Zj
ℓ , respectively.

Title: Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, and Interpretable NETworks (THEORINET).
Lead PI: René Vidal (JHU). PIs: Emmanuel Candès (Stanford), Ingrid Daubechies (Duke), Yi Ma (UC Berkeley), Alejandro Ribeiro (Penn).

parameters. In prior work [104, 105] we showed that for simple architectures one can adapt the size of the network
(e.g, the number of neurons in a hidden layer) to the richness of the data via suitable regularization. Here, we plan to
integrate the notions of expressivity from Aim 1.1 (which go beyond our notions of size in [104,105]) with the notions
of persistence developed in [103] to derive joint conditions relating data quality and expressivity. Moreover, we plan
to extend the optimization methods in [104,105] to search for networks that are adapted to the richness of the data and,
conversely, search for data augmentation strategies that allow for training a network with a given level of expressivity.

Second, we plan to study the interplay between the robustness of a DNN and the quality of the training data. As far
as we are aware, [106] is one of the earliest papers to moot the possibility of data integrity attacks (on the training data)
to attack AI/ML algorithms. We have continued this work in a number of papers such as [107], [108]. However, further
characterization of defenses against these kinds of data integrity attacks still need to be completed. Here, we plan to
provide estimates of the resilience to data integrity attacks to classes of “worst case” attack inputs. Furthermore, there
are subtle trade-offs between the quality of the input and is propagation along the multiple layers of the network. It is
of course clear that the earliest layers are easiest to train but beyond that new measures of expressivity of the input need
to be used (beyond the kinds of general harmonic analysis methodology that is common in adaptive systems [109]). A
key question is how the persistence (richness) of training inputs propagates through the layers to ensure stable training.

Aim 2.4 High-dimensional Statistics for Understanding Generalization
Motivations. As mentioned earlier, learning algorithms have a crucial implicit role in controlling model complexity
and preventing overfitting, thereby improving the model’s generalization performance. One approach to study this
phenomenon is to focus on specific algorithms and analyze the implicit biases they produce. For example, a recent line
of work [110–116] shows that SGD applied to a loss without any explicit regularizer leads to implicit `2 regularization.
Similarly, our recent work shows that dropout applied to the squared loss induces squared nuclear norm regularization
[117–119]. On the other hand, recent theoretical and empirical results suggest that DNNs are best understood as high-
dimensional non-parametric models, where the number of parameters grows as fast as or faster than the amount of data.
For instance, it is often observed that larger models generalize better [120], in contradiction with classical intuition
which would predict that large models overfit [121]. [122] posit that this is because larger models have lower variance,
while [123–125] argue that we can reconcile the observed and classical behavior via a “double descent” curve that
captures both regimes. Recent theoretical work shows that in some cases, this behavior can be understood in analogy
with random feature kernel regression [126–129]. The high-dimensional regime poses new challenges to the theory of
statistical learning. Classical methods for understanding uncertainty are no longer valid and must be updated; at the
same time, the subtle interplay between regularization, learning, and optimization must be better understood.Rethinking Bias-Variance Trade-off for Generalization of Neural Networks

(a) Case 1 (b) Case 2 (c) Case 3
Figure 1. Typical cases of expected risk curve (in black) in neural networks. Blue: squared bias curve. Red: variance curve.

is monotonically decreasing with network width as in the
classical theory, the variance curve is unimodal or bell-
shaped: it first increases and then decreases (see Figure
2). Therefore, the unimodal variance is consistent with the
finding of Neal et al. (2019), who observed that the variance
eventually decreases in the overparameterized regime. In
particular, the unimodal variance curve can also be observed
in Neal et al. (2019, Figure 1, 2, 3). However, Neal et al.
(2019) did not point out the characteristic shape of the vari-
ance or connect it to double descent. More importantly, we
demonstrate that the unimodal variance phenomenon can
be robustly observed for varying network architecture and
dataset. Moreover, by using a generalized bias-variance
decomposition for Bregman divergences (Pfau, 2013), we
verify that it occurs for both squared loss and cross-entropy
loss.

This unimodal variance phenomenon initially appears to
contradict recent theoretical work suggesting that both bias
and variance are non-monotonic and exhibit a peak in some
regimes (Mei & Montanari, 2019; Hastie et al., 2019) . The
difference is that this previous work considered the fixed-
design bias and variance, while we measure the random-
design bias and variance (we describe the differences in
detail in §2.1). Prior to our work, Nakkiran (2019) also
considered the variance of linear regression in the random-
design setting.

A key finding of our work is that the complex behavior of
the risk curve arises due to the simple but non-classical vari-
ance unimodality phenomenon. Indeed, since the expected
risk (test loss) is the sum of bias and variance, monotonic
bias and unimodal variance can lead to three characteristic
behaviors, illustrated in Figure 1, depending on the relative
size of the bias and variance. If the bias completely domi-
nates, we obtain monotonically decreasing risk curve (see
Figure 1(a)). Meanwhile, if the variance dominates, we
obtain a bell-shaped risk curve that first increases then de-
creases (see Figure 1(c)). The most complex behavior is
if bias and variance dominate in different regimes, leading
to the double-descent risk curve in Figure 1(b). All three
behaviors are well-aligned with the empirical observation
in deep learning that larger models typically perform bet-

ter. The most common behavior in our experiments is the
first case (monotonically decreasing risk curve) as bias is
typically larger than variance. We can observe the double-
descent risk curve when label noise is added to the training
set (see §3.3), and can observe the unimodal risk curve
when we use the generalized bias-variance decomposition
for cross-entropy loss (see §3.2).

Further Implications. The investigations described
above characterize bias and variance as a function of net-
work width, but we can explore the dependence on other
quantities as well, such as model depth (§4.2). Indeed, we
find that deeper models tend to have lower bias but higher
variance. Since bias is larger at current model sizes, this
confirms the prevailing wisdom that we should generally
use deeper models when possible. On the other hand, it
suggests that this process may have a limit—eventually very
deep models may have low bias but high variance such that
increasing the depth further harms performance.

We also investigate the commonly observed drop in accu-
racy for models evaluated on out-of-distribution data, and at-
tribute it primarily to increased bias. Combined with the pre-
vious observation, this suggests that increasing model depth
may help combat the drop in out-of-distribution accuracy,
which is supported by experimental findings in Hendrycks
& Dietterich (2019).

Theoretical Analysis of A Two-Layer Neural Network.
Finally, we conduct a theoretical study of a two-layer lin-
ear network with a random Gaussian first layer. While this
model is much simpler than those used in practice, we never-
theless observe the same characteristic behaviors for the bias
and variance. In particular, by working in the asymptotic
setting where the input data dimension, amount of training
data, and network width go to infinity with fixed ratios, we
show that the bias is monotonically decreasing while the
variance curve is unimodal. Our analysis also character-
izes the location of the variance peak as the point where
the number of hidden neurons is approximately half of the
dimension of the input data.

— Bias
— Variance

Preliminary results. We recently performed an empirical study of the bias and vari-
ance of neural networks across several datasets, architectures, and model sizes [130],
and discovered that while the bias decreases monotonically as classical theory would
predict, the variance first increases and then decreases as models become larger, ex-
hibiting a unimodal shape. Moreover, the bias typically dominates the error relative
to the variance. These results pose a mystery to be explained, and a challenge to ex-
isting theory. The main mystery is why the variance is consistently unimodal. We
constructed a simple theoretical settings where we observe unimodal variance, but it is equally possible to construct
settings where the variance is bimodal, trimodal, and so on. Since unimodal variance is ubiquitous in practice, we
conjecture that there is some widely-applicable assumption that implies unimodality, and aim to articulate this as-
sumption. The challenge is that, since bias dominates variance, traditional theories of uncertainty estimation no longer
apply, as they typically assume that the bias decays faster than the variance. This may be why the many attempts to
obtain empirically valid uncertainty in neural network predictions have achieved only limited success [131].
Proposed research. We will meet this challenge by developing a modern theory of uncertainty estimation that ac-
counts for bias explicitly. This will be achieved by blending tools from high-dimensional asymptotics [132, 133],
random matrix theory [134,135], and nonparametric uncertainty estimation [136]. Specifically, the unimodal variance
phenomenon can be thought of as a type of universal limit law for random design nonparametric regression, in analogy
with other limit laws such as the Marcenko-Pastur and Tracy-Widom laws for random matrices. The underlying tools
that produced these laws can likely shed insight in the present setting. For uncertainty estimation we can start from tra-
ditional tools such as the bootstrap and jackknife (Aim 1.3), but realize that these tools make assumptions on the bias
that do not hold for DNNs. Nevertheless, they provide a useful framework to focus our thinking, in terms of model-
free asymptotic expansions of the risk. By combining this with modern theories of high-dimensional asymptotics and
random matrices, we can explain and incorporate non-traditional behaviors of the bias.

8

Such “auto” ridge regressions do not overfit even with redundant random
regressors, due to a “double descent” risk [Yang, ICML’20]!
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White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

Incremental Deformation via Gradient Flow

Extrapolate the gradient ∂∆R(Z)
∂Z from training samples Z to all z ∈ Rd:

∂∆R

∂Z

∣∣∣∣
Zℓ

= EℓZℓ −
k∑

j=1

γjC
j
ℓZℓ Πj

︸︷︷︸
known

∈ Rd×m, (15)

g(zℓ,θℓ)
.
= Eℓzℓ −

k∑

j=1

γjC
j
ℓzℓ πj(zℓ)︸ ︷︷ ︸

unknown

∈ Rd. (16)
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Estimate of the Membership πj(zℓ)

Estimate the membership πj(zℓ) with “softmax” on the residuals ∥Cj
ℓzℓ∥:

πj(zℓ) ≈ π̂j(zℓ)
.
=

exp (−λ∥Cj
ℓzℓ∥)∑k

j=1 exp (−λ∥C
j
ℓzℓ∥)

∈ [0, 1]. (17)

Thus the weighted residuals for contracting:

σ
(
[C1

ℓ zℓ, . . . ,C
k
ℓ zℓ]

)
.
=

k∑

j=1

γjC
j
ℓzℓ · π̂j(zℓ) ∈ Rd. (18)

Many alternatives, e.g. enforcing all features to be in the first quadrant:

σ(zℓ) ≈ zℓ −
k∑

j=1

ReLU
(
P j
ℓ zℓ

)
, (19)
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The ReduNet for Optimizing Rate Reduction
Iterative projected gradient ascent (PGA) :

zℓ+1 ∝ zℓ + η ·
[
Eℓzℓ + σ

(
[C1

ℓ zℓ, . . . ,C
k
ℓ zℓ]

)]

︸ ︷︷ ︸
g(zℓ,θℓ)

s.t. zℓ+1 ∈ Sd−1, (20)

f(x,θ) = ϕL◦ϕL−1◦· · ·◦ϕ0(x), with ϕℓ(zℓ,θℓ)
.
= PSd−1 [zℓ+η·g(zℓ,θℓ)].

Figure: One layer of the ReduNet: one PGA iteration.
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The ReduNet versus ResNet or ResNeXt

Iterative projected gradient ascent (PGA):

zℓ+1 ∝ zℓ + η ·
[
Eℓzℓ + σ

(
[C1

ℓ zℓ, . . . ,C
k
ℓ zℓ]

)]

︸ ︷︷ ︸
g(zℓ,θℓ)

s.t. zℓ+1 ∈ Sd−1, (21)
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. . .

Figure: Left: ReduNet. Middle and Right: ResNet [He et. al. 2016] and
ResNeXt [Xie et. al. 2017] (hundreds of layers).

Forward construction instead of back propagation!1

1The Forward-Forward Algorithm, G. Hinton, 2022.
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White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

The ReduNet versus Mixture of Experts

Approximate iterative projected gradient ascent (PGA) :

zℓ+1 ∝ zℓ + η ·
[
Eℓzℓ + σ

(
[C1

ℓ zℓ, . . . ,C
k
ℓ zℓ]

)]

︸ ︷︷ ︸
g(zℓ,θℓ)

s.t. zℓ+1 ∈ Sd−1, (22)

Figure: Left: ReduNet layer. Right: Mixture of Experts [Shazeer et. al. 2017] or
Switched Transformer [Fedus et. al. 2021] (1.7 trillion parameters).

Forward construction instead of back propagation!2

2The Forward-Forward Algorithm, G. Hinton, 2022.
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White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

ReduNet Features for Mixture of Gaussians
L =2000-Layers ReduNet: m = 500, η = 0.5, ϵ = 0.1.
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Figure: Left: original samples X and ReduNet features Z = f(Z,θ) for 2D and
3D Mixture of Gaussians. Right: plots for the progression of values of the rates.
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Group Invariant Classification

Feature mapping f(x,θ) is invariant to a group of transformations:

Group Invariance: f(x ◦ g,θ) ∼ f(x,θ), ∀g ∈ G, (23)

where “∼” indicates two features belonging to the same equivalent class.

Figure: Left: 1D rotation S1; Right: 2D cyclic translation T 2.

1. Fooling CNNs with simple transformations, Engstrom et.al., 2017.

2. Why do deep convolutional networks generalize so poorly to small image transformations? Azulay & Weiss, 2018.
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Group Invariant Classification
Feature mapping f(x,θ) is invariant to a group of transformations:

Group Invariance: f(x ◦ g,θ) ∼ f(x,θ), ∀g ∈ G, (24)

where “∼” indicates two features belonging to the same equivalent class.

Figure: Embed all equivariant samples to the same subspace.
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Circulant Matrix and Convolution

Given a vector z = [z0, z1, . . . , zn−1]
∗ ∈ Rn, we may arrange all its circular

shifted versions in a circulant matrix form as

circ(z)
.
=




z0 zn−1 . . . z2 z1
z1 z0 zn−1 · · · z2
... z1 z0

. . .
...

zn−2
...

. . .
. . . zn−1

zn−1 zn−2 . . . z1 z0



∈ Rn×n. (25)

A circular (or cyclic) convolution:

circ(z) · x = z ⊛ x, where (z ⊛ x)i =

n−1∑

j=0

xjzi+n−jmodn. (26)
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Convolutions from Cyclic Shift Invariance

Given a set of sample vectors Z = [z1, . . . ,zm], construct the ReduNet
from cyclic-shift augmented families Z = [circ(z1), . . . , circ(zm)].

Proposition (Convolution Structures of E and Cj)

The linear operator in the ReduNet:

E = α
(
I + α

m∑

i=1

circ(zi)circ(zi)∗
)−1

is a circulant matrix and represents a circular convolution:

Ez = e⊛ z,

where e is the first column vector of E. Similarly, the operators Cj

associated with subsets Zj are also circular convolutions.
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Tradeoff between Invariance and Separability
A problem with separability: superposition of
shifted “delta” functions can generate any other signals:
span[circ(x)] = Rn!
A necessary assumption: x is sparsely generated
from incoherent dictionaries for different classes:
x = [circ(D1), circ(D2), . . . , circ(Dk)]z̄.

Fish
C channels

sparse

Duck

C channels

sparse

=

=

C convolution kernels

C convolution kernels
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Tradeoff between Invariance and Separability
A basic idea: estimate sparse codes z̄ by taking their responses to
multiple analysis filters k1, . . . ,kC ∈ Rn [Rubinstein & Elad 2014]:

z̄ = τ
[
k1 ⊛ x, . . . ,kC ⊛ x

]∗ ∈ RC×n. (27)

for some entry-wise “sparsity-promoting” operator τ (·).

Lifting & Thresholding

Fish
C channels

sparse

Duck

Lifting & Thresholding

C channels

sparse

C convolution kernels

C convolution kernels
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Multi-Channel Convolutions

Given a set of multi-channel sparse codes Z̄ = [z̄1, . . . , z̄m], construct the
ReduNet from their circulant families Z̄ = [circ(z̄1), . . . , circ(z̄m)].

Proposition (Convolution Structures of Ē and C̄j)

The linear operator in the ReduNet:

Ē = α
(
I + α

m∑

i=1

circ(z̄i)circ(z̄i)∗
)−1 ∈ RCn×Cn

is a block circulant matrix and represents a multi-channel convolution:

Ē(z̄) = ē⊛ z̄ ∈ RCn,

where ē is the first slice of Ē. Similarly, the operators C̄j associated with
subsets Z̄j are also multi-channel circular convolutions.
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Multi-Channel Convolutions

Ē(z̄) = ē⊛ z̄ ∈ RCn, C̄j(z̄) = c̄j ⊛ z̄ ∈ RCn :

input
data
cube

output
data
cube

Figure: Ē and C̄j are automatically multi-channel convolutions!
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

The Convolution ReduNet versus Scattering Network
Iterative projected gradient ascent (PGA) for invariant rate reduction:

z̄ℓ+1 ∝ z̄ℓ + η ·
[
Ēℓz̄ℓ + σ

(
[C̄1

ℓ z̄ℓ, . . . , C̄
k
ℓ z̄ℓ]

)]

︸ ︷︷ ︸
g(z̄ℓ,θℓ)

, (28)

with each layer being a fixed number of multi-channel convolutions!

Figure: Left: ReduNet layer. Right: Scatterting Network [J. Bruna and S.

Mallat, 2013] [T. Wiatowski and H. Blcskei, 2018] (only 2-3 layers).
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Fast Computation in Spectral Domain

Fact: all circulant matrices can be simultaneously diagonalized by the
discrete Fourier transform F : circ(z) = F ∗DF .

(
I+

m∑
i=1

circ(z̄i)circ(z̄i)∗

)−1

=

I+

F ∗ 0 0

0
. . . 0

0 0 F ∗

 D11 ··· D1C

...
. . .

...
DC1 ··· DCC

[F 0 0

0
. . . 0

0 0 F

]−1

∈ RnC×nC

where Dij are all diagonal of size n.

Computing the inverse is O(C3n) in the spectral domain, instead of
O(C3n3)! Learning convolutional networks for invariant classification is
naturally far more efficient in the spectral domain!

Nature: In visual cortex, neurons encode and transmit information in
frequency, hence called “spiking neurons” [Softky & Koch, 1993; Eliasmith &

Anderson, 2003].
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

A “White Box” Deep Convolutional ReduNet by Construction (Spectral Domain)
Require: Z̄ ∈ RC×T×m, Π, ϵ > 0, λ, and a learning rate η.

1: Set α = C
mϵ2

,
{
αj = C

tr(Πj)ϵ2

}k
j=1

,
{
γj =

tr(Πj)
m

}k
j=1

.

2: Set V̄0 = {v̄i
0(p) ∈ CC}T−1,m

p=0,i=1
.
= DFT(Z̄) ∈ CC×T×m.

3: for ℓ = 1, 2, . . . , L do

4: for p = 0, 1, . . . , T − 1 do

5: Compute Ēℓ(p) ∈ CC×C and {C̄j
ℓ
(p) ∈ CC×C}kj=1 as

Ēℓ(p)
.
= α ·

[
I + α · V̄ℓ−1(p) · V̄ℓ−1(p)

∗]−1,

C̄j
ℓ
(p)

.
= αj ·

[
I + αj · V̄ℓ−1(p) · Πj · V̄ℓ−1(p)

∗]−1;

6: end for
7: for i = 1, . . . ,m do

8: for p = 0, 1, . . . , T − 1 do

9: Compute {p̄ij
ℓ

(p)
.
= C̄j

ℓ
(p) · v̄i

ℓ(p) ∈ CC×1}kj=1;

10: end for
11: Let {P̄ ij

ℓ
= [p̄

ij
ℓ

(0), . . . , p̄
ij
ℓ

(T − 1)] ∈ CC×T }kj=1;

12: Compute
{
π̂

ij
ℓ

=
exp(−λ∥P̄ ij

ℓ
∥F )∑k

j=1
exp(−λ∥P̄ ij

ℓ
∥F )

}k

j=1
;

13: for p = 0, 1, . . . , T − 1 do

14: v̄i
ℓ(p) = v̄i

ℓ−1(p) + η
(
Ēℓ(p)v̄

i
ℓ(p) −

∑k
j=1 γj · π̂ij

ℓ
· C̄j

ℓ
(p) · v̄i

ℓ(p)
)
;

15: end for
16: v̄i

ℓ = v̄i
ℓ / ∥v̄i

ℓ∥F ;

17: end for
18: Set Z̄ℓ = IDFT(V̄ℓ) as the feature at the ℓ-th layer;

19: 1
2T

∑T−1
p=0

(
log det[I + αV̄ℓ(p) · V̄ℓ(p)

∗] − tr
(
Πj

)
m

log det[I + αj V̄ℓ(p) · Πj · V̄ℓ(p)
∗]

)
;

20: end for
Ensure: features Z̄L, the learned filters {Ēℓ(p)}ℓ,p and {C̄j

ℓ
(p)}j,ℓ,p.
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Overall Process (the Elephant)
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.

9

Preprint

Multi-Class
Signals

Lifting &
Sparse Coding

Invariant
Rate Reduction

Incoherent
Subspaces

Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
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0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
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0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
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]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
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0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
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0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
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0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Figure 3: Overview of the process for classifying multi-class signals with shift invariance: Multi-
channel lifting and sparse coding followed by a (convolutional) ReduNet. These operations are
necessary to map shift-invariant multi-class signals to incoherent (linear) subspaces. Most modern
deep neural networks resemble this process.

The ReduNet constructed from circulant version of these multi-channel features z̄, i.e., circ(Z̄)
.
=

[circ(z̄1), . . . , circ(z̄m)], retains the good invariance properties described above: the linear opera-
tors, now denoted as Ē and C̄j , remain block circulant, and represent multi-channel 1D circular
convolutions. Specifically, we have the following result (see Appendix B.2 for a proof).

Proposition 2.2 (Multi-channel convolution structures of Ē and C̄j) The matrix

Ē
.
= α

(
I + αcirc(Z̄)circ(Z̄)∗)−1

(24)
is block circulant, i.e.,

Ē =

⎡
⎣

Ē1,1 ··· Ē1,C

...
. . .

...
ĒC,1 ··· ĒC,C

⎤
⎦ ∈ RnC×nC , (25)

where each Ēc,c′ ∈ Rn×n is a circulant matrix. Moreover, Ē represents a multi-channel circular
convolution, i.e., for any multi-channel signal z̄ ∈ RC×n we have

Ē · vec(z̄) = vec(ē ! z̄).

In above, ē ∈ RC×C×n is a multi-channel convolutional kernel with ē[c, c′] ∈ Rn being the first
column vector of Ēc,c′ , and ē ! z̄ ∈ RC×n is the multi-channel circular convolution defined as

(ē ! z̄)[c]
.
=

C∑

c′=1

ē[c, c′] ! z̄[c′], ∀c = 1, . . . , C. (26)

Similarly, the matrices C̄j associated with any subsets of Z̄ are also multi-channel circular convo-
lutions.

From Proposition 2.2, ReduNet is a deep convolutional network for multi-channel 1D signals by
construction.10 Figure 3 illustrates the whole process of rate reduction with such sparse and invariant
features.

Fast Computation in the Spectral Domain. The calculation of Ē in (24) requires inverting a ma-
trix of size nC × nC, which has complexity O(n3C3). By using the relationship between circulant
matrix and Discrete Fourier Transform (DFT) of a 1D signal, this complexity can be significantly
reduced. Specifically, let F ∈ Cn×n be the DFT matrix, and DFT(z)

.
= Fz ∈ Cn×n be the DFT

of z ∈ Rn, where C denotes the set of complex numbers. We have
circ(z) = F ∗diag(DFT(z))F . (27)

We refer the reader to Appendix B.3 for properties of circulant matrices and DFT. By using the
relation in (27), Ē can be computed as

Ē =

[
F ∗ 0 0

0
. . . 0

0 0 F ∗

]
· α

(
I + α

[
D11 ··· D1C

...
. . .

...
DC1 ··· DCC

])−1

·
[

F 0 0

0
. . . 0

0 0 F

]
, (28)

10Unlike Xception nets Chollet (2017), these multi-channel convolutions in general are not depthwise sepa-
rable. It remains open what additional structures on the data would lead to depthwise separable convolutions.
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Necessary components:

• sparse coding for class separability;

• deep networks maximize rate reduction;

• spectral computing for shift-invariance;

• convolution, normalization, nonlinearity...
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: 1D Cyclic Shift Invariance of 0 and 1
2000 training samples, 1980 testing, C = 5, L =3500-layers ReduNet.

Figure: Left: Multi-channel feature representation of an image in polar coordinates.
Right: Example of training/testing samples.
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Figure: Left: Rates along the layers; Middle: cross-class cosine similarity among
trainings; Right: similarity among testings.
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: 1D Cyclic Shift Invariance of 0 and 1
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Figure: Left two: heat maps for training and testing. Right two: heat maps for one pair
of samples at every possible shift.

Table: Network performance on digits with all rotations.

ReduNet ReduNet (invariant)
Acc (Original Test Data) 0.983 0.996
Acc (Test with All Shifts) 0.707 0.993

1. Fooling CNNs with simple transformations, Engstrom et.al., 2017.

2. Why do deep convolutional networks generalize so poorly to small image transformations? Azulay & Weiss, 2018.
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: 1D Cyclic Shift Invariance of All 10 Digits
100 training samples, 100 testing, C = 20, L =40-layers ReduNet.
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Figure: Heatmaps of cosine similarity among shifted training data Xshift (left) and
learned features Zshift (right).
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Figure: Left: Rates evolution with iterations; Right: histograms of the cosine similarity
(in absolute value) between all pairs of features across different classes.
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: 2D Cyclic Translation Invariance

1000 for training, 500 for testing, C = 5, L =2000-layers ReduNet.

Table: Network performance on digits with all translations.

ReduNet ReduNet (invariant)
Acc (Original Test Data) 0.980 0.975
Acc (Test with All Shifts) 0.540 0.909

1. Fooling CNNs with simple transformations, Engstrom et.al., 2017.

2. Why do deep convolutional networks generalize so poorly to small image transformations? Azulay & Weiss, 2018.
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: 2D Cyclic Trans. Invariance of All 10 Digits
100 training samples, 100 testing, C = 75, L =25-layers ReduNet.

0 400 800 1200 1600

0

400

800

1200

1600 0.0

0.5

1.0

0 400 800 1200 1600

0

400

800

1200

1600 0.0

0.5

1.0

Figure: Heatmaps of cosine similarity among shifted training data Xshift (left) and
learned features Zshift (right).
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Figure: Left: Rates evolution with iterations; Right: histograms of the cosine similarity
(in absolute value) between all pairs of features across different classes.
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: Back Propagation of ReduNet (MNIST)

2D cyclic trans. of 10 digits, 500 training samples, all testing, C = 16,
L =30-layers invariant ReduNet.

Initialization Backpropagation Test Accuracy

✓ ✗ 89.8%
✗ ✓ 93.2%
✓ ✓ 97.8%

Table: Test accuracy of 2D translation-invariant ReduNet, ReduNet-bp (without
initialization), and ReduNet-bp (with initialization) on the MNIST dataset.

• Backprop: the ReduNet architecture can be fine-tuned by SGD and
achieves better standard accuracy after back propagation;

• Initialization: using ReduNet for initialization can achieve better
performance than the same architecture with random initialization.
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: Back Propagation of ReduNet (CIFAR-10)

LNR
eL
U

... ... ... ...

Figure: A ReduNet-inspired architecture

Table: Classification performance of ReduNet-inspired architecture on CIFAR10.

ReLU Train Acc Test Acc

✓ 0.9997 0.8327
✗ 0.9970 0.6542
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Conclusions: Learn to Compress and Compress to Learn!

Principles of Parsimony:

• Clustering via compression: minΠRc(X,Π)

• Classification via compression: minπ δRc(x,π)

• Representation via maximizing rate reduction: maxZ ∆R(Z,Π)

• Deep networks via optimizing rate reduction: Ż = η · ∂∆R
∂Z

A Unified Framework:

• A principled objective for all settings of learning: information gain

• A principled approach to interpret deep networks: optimization

“Everything should be made as simple as possible, but not simpler.”
– Albert Einstein
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Conclusions: Learn Linear Discriminative Representations

f(x, ✓)

RD Rd

M

M1

M2

Mj

xi

S1
S2

Sj

zi

Figure 1: Left and Middle: The distribution D of high-dim data x 2 RD is supported on a manifold M and
its classes on low-dim submanifolds Mj , we learn a map f(x, ✓) such that zi = f(xi, ✓) are on a union of
maximally uncorrelated subspaces {Sj}. Right: Cosine similarity between learned features by our method
for the CIFAR10 training dataset. Each class has 5,000 samples and their features span a subspace of over 10
dimensions (see Figure 3(c)).

the component distributions Dj are (or can be made). One popular working assumption is that the
distribution of each class has relatively low-dimensional intrinsic structures.9 Hence we may assume
the distribution Dj of each class has a support on a low-dimensional submanifold, say Mj with
dimension dj ⌧ D, and the distribution D of x is supported on the mixture of those submanifolds,
M = [k

j=1Mj , in the high-dimensional ambient space RD, as illustrated in Figure 1 left.

With the manifold assumption in mind, we want to learn a mapping z = f(x, ✓) that maps each of
the submanifolds Mj ⇢ RD to a linear subspace Sj ⇢ Rd (see Figure 1 middle). To do so, we
require our learned representation to have the following properties:

1. Between-Class Discriminative: Features of samples from different classes/clusters should
be highly uncorrelated and belong to different low-dimensional linear subspaces.

2. Within-Class Compressible: Features of samples from the same class/cluster should be
relatively correlated in a sense that they belong to a low-dimensional linear subspace.

3. Maximally Diverse Representation: Dimension (or variance) of features for each class/cluster
should be as large as possible as long as they stay uncorrelated from the other classes.

Notice that, although the intrinsic structures of each class/cluster may be low-dimensional, they are
by no means simply linear in their original representation x. Here the subspaces {Sj} can be viewed
as nonlinear generalized principal components for x [VMS16]. Furthermore, for many clustering
or classification tasks (such as object recognition), we consider two samples as equivalent if they
differ by certain class of domain deformations or augmentations T = {⌧}. Hence, we are only
interested in low-dimensional structures that are invariant to such deformations,10 which are known to
have sophisticated geometric and topological structures [WDCB05] and can be difficult to learn in a
principled manner even with CNNs [CW16, CGW19]. There are previous attempts to directly enforce
subspace structures on features learned by a deep network for supervised [LQMS18] or unsupervised
learning [JZL+17, ZJH+18, PFX+17, ZHF18, ZJH+19, ZLY+19, LQMS18]. However, the self-
expressive property of subspaces exploited by [JZL+17] does not enforce all the desired properties
listed above; [LQMS18] uses a nuclear norm based geometric loss to enforce orthogonality between
classes, but does not promote diversity in the learned representations, as we will soon see. Figure 1
right illustrates a representation learned by our method on the CIFAR10 dataset. More details can be
found in the experimental Section 3.

2 Technical Approach and Method

2.1 Measure of Compactness for a Representation

Although the above properties are all highly desirable for the latent representation z, they are by no
means easy to obtain: Are these properties compatible so that we can expect to achieve them all at

9There are many reasons why this assumption is plausible: 1. high dimensional data are highly redundant; 2.
data that belong to the same class should be similar and correlated to each other; 3. typically we only care about
equivalent structures of x that are invariant to certain classes of deformation and augmentations.

10So x 2 M iff ⌧(x) 2 M for all ⌧ 2 T .

3

Compared to conventional deep neural networks:

Conventional DNNs ReduNets

Objectives label fitting information gain

Deep architectures trial & error iterative optimization

Layer operators empirical projected gradient

Shift invariance CNNs+augmentation invariant ReduNets

Initializations random/pre-design forward computed

Training/fine-tuning back prop forward/back prop

Interpretability black box white box

Representations hidden/latent incoherent subspaces
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Open Problems: Theory

MCR2: max
Z⊂Sd−1,Π∈Ω

∆R
(
Z,Π, ϵ

)
= R(Z, ϵ)−Rc(Z, ϵ | Π).

• Phase transition phenomenon in clustering via compression?

• Statistical justification for robustness of MCR2 to label noise?

• Optimal configurations for broader conditions and distributions?

• Fundamental tradeoff between sparsity and invariance?

• Jointly optimizing both representation Z and clustering Π?

Joint Dynamics: Ż = η · ∂∆R

∂Z
, Π̇ = γ · ∂∆R

∂Π
.
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Open Problems: Architectures and Algorithms

ReduNet: z̄ℓ+1 ∝ z̄ℓ + η ·
[
ēℓ ⊛ z̄ℓ + σ

(
[c̄1ℓ ⊛ z̄ℓ, . . . , c̄

k
ℓ ⊛ z̄ℓ]

)]
∈ Sd−1.

• New architectures from accelerated gradient schemes?

• Conditions for channel-wise separable and short convolutions?

• Architectures from invariant rate reduction for other groups?

• Transformer:3

∂R(Z)

∂Z

∣∣∣∣
Zℓ

= α(I+αZℓZ
∗
ℓ )

−1Zℓ ≈ α
[
Zℓ − αZℓ(Z

∗
ℓZℓ)

]
︸ ︷︷ ︸
self-attention head

.

• Algorithmic architectures (or networks) for optimizing Π?

3Attention: Self-Expression Is All You Need, Rene Vidal, 2022.
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Open Directions: Extensions
• Data with other dynamical or graphical structures.

• Better transferability and robustness w.r.t. low-dim structures.

• Combine with a generative model (a generator or decoder).

• Sparse coding, spectral computing, subspace embedding in nature.4

sparse coding in visual cortex
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4figures from Bruno Olshausen of Neuroscience Dept., UC Berkeley.
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Closed-Loop Transcription to an LDR (CTRL)

From Open-Loop to Closed-Loop Representation

MCR2 : X
f(x,θ)−−−−−−→ Z(θ) : max

θ
∆R(Z(θ),Π, ϵ).

Features learned are more interpretable, independent, rich, and robust.

Nevertheless:

• Anything missing, anything unexpected: dim(Xj) = dim(Zj)?

• Can we go from the feature Zj back to the data Xj?

• Is the learned LDR adequate to generate real-world (visual) data?

Can we establish an autoencoding between the data and the LDR:

X
f(x,θ)−−−−−−→ Z(θ)

g(z,η)−−−−−→ X̂? (29)

Yi Ma Design Deep Networks June 7, 2023 75 / 89



Closed-Loop Transcription to an LDR (CTRL)

Low-dim Autoencoding for High-Dim Data

Assumption: the data X lie on a low-dimensional submanifold X ⊂M
or multiple ones: X ⊂ ∪kj=1Mj in a high-dimensional space ∈ RD:

RD

M

M1

M2

Mj

Goal: seeking a low-dim representation Z in Rd (d≪ D) for the data X
on low-dim submanifolds such that:

X ⊂ RD f(x,θ)−−−−−−→ Z ⊂ Rd g(z,η)−−−−−→ X̂ ≈X ∈ RD. (30)
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Closed-Loop Transcription to an LDR (CTRL)

CTRL: Dual Roles of the Encoder and Decoder

f is both an encoder and sensor; and g is both a decoder and controller.
They form a closed-loop feedback control system:

A closed-loop notion of “self-consistency” between Z and Ẑ is achieved
by a pursuit-evasion game between f as a “evader” and g as a “pursuer”:

D(X, X̂)
.
= max

θ
min
η

k∑

j=1

∆R
(
f(Xj , θ)︸ ︷︷ ︸

Zj(θ)

, f(g(f(Xj , θ), η), θ)︸ ︷︷ ︸
Ẑj(θ,η)

)
. (31)
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Closed-Loop Transcription to an LDR (CTRL)

Overall CTRL Objective: Self-Consistency & Parsimony

The overall minimax game between the encoder f and decoder g:

• f maximizes the rate reduction of the features Z of the data X;

• g minimizes the rate reduction of the features Ẑ of the decoded X̂.

A minimax program to learn a multi-class LDR for data X = ∪kj=1Xj :

max
θ

min
η

∆R
(
f(X, θ)

)
︸ ︷︷ ︸
Expansive encode

+∆R
(
h(X, θ, η)

)
︸ ︷︷ ︸
Compressive decode

+

k∑

j=1

∆R
(
f(Xj , θ), h(Xj , θ, η)

)
︸ ︷︷ ︸

Contrastive & Contractive

with h(x)
.
= f ◦ g ◦ f(x), or equivalently

max
θ

min
η

∆R
(
Z(θ)

)
+∆R

(
Ẑ(θ, η)

)
+

k∑

j=1

∆R
(
Zj(θ), Ẑj(θ, η)

)
.
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Closed-Loop Transcription to an LDR (CTRL)

Characteristics of the Overall CTRL Objective

max
θ

min
η

∆R
(
Z(θ)

)
+∆R

(
Ẑ(θ, η)

)
+

k∑

j=1

∆R
(
Zj(θ), Ẑj(θ, η)

)
.

• Simplicity: all terms are closed-form rate reduction on features.

• Self-consistency: enforced by closed-loop encoding and decoding.

• Structured: distribution of learned features Z is an LDR.

• No need to specify a prior or a surrogate target distribution.

• No need of any direct explicit distance between X and X̂.

• No more approximations or bounds for (KL-, JS-, W-) “distances”.

• No heuristics or regularizing terms in the objective.

Parsimony and self-consistency are all you need to model X?
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Closed-Loop Transcription to an LDR (CTRL)

Incremental Learning via Closed-Loop Transcription

max
θ

min
η

∆R(Z) + ∆R(Ẑ) + ∆R(Znew, Ẑnew)

subject to ∆R(Zold, Ẑold) = 0. (32)

Incremental Learning of Structured Memory, arXiv:2202.05411 .
No Catastrophic Forgetting.

ICLR 2023
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Closed-Loop Transcription to an LDR (CTRL)

Unsupervised Learning via Closed-Loop Transcription

max
θ

min
η

R(Z) + ∆R(Z, Ẑ) (33)

subject to
∑

i∈N
∆R(zi

conv, ẑ
i
conv) = 0, and

∑

i∈N
∆R(zi, zi

a) = 0.

Unsupervised Learning of Structured Representation,
arXiv:2210.16782. No Catastrophic Forgetting.
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Closed-Loop Transcription to an LDR (CTRL)

Whitebox Network as Sparse Dictionary Learning (SDNet)

Use iterative convolution sparse coding (via ISTA) as layers.

Model size, memory, speed, and accuracy all comparable to ResNet.

More Stable to Noises and More Robust to Perturbations.

NeurIPS 2022
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Closed-Loop Transcription to an LDR (CTRL)

Transcription via Convolution Sparse Autoencoding
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Conclusions and Open Problems

Conclusions: Closed-Loop Transcription to an LDR

• a universal learning engine: transform external real-world data to a
compact and structured internal (LDR) representation.

• parsimony: optimization of a information theoretical measure of rate
reduction via an encoder and decoder.

• self-consistency: a pursuit-evasion game between a sensor and
generator through a closed-loop feedback system.

• white box: learning objectives, network architectures, and learned
representations.
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Conclusions and Open Problems

Open Mathematical Problems about CTRL

For the closed-loop minimax rate reduction program:

max
θ

min
η

∆R
(
Z(θ)

)
+∆R

(
Ẑ(θ, η)

)
+

k∑

j=1

∆R
(
Zj(θ), Ẑj(θ, η)

)
.

• optimality: characterization of the equilibrium points?

• convergence of the closed-loop control problem (infinite-dim)?

• linearization of distribution supports (plastic manifold learning)?

• optimal density of the distributions (Brascamp-Lieb inequalities)?

• correct model selection (no under- or over-fitting)?

• guarantees for approximate sample-wise auto-encoding?
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Conclusions and Open Problems

Open Directions: Extensions and Connections

• How to scale up to hundreds and thousands of classes?
(variational forms for rate reduction, CVPR’22...)

• Internal computational mechanisms for memory forming (in Nature)?
(incremental/unsupervised learning without catastrophic forgetting.)

• Better feedback for generative quality and discriminative property?

• Whitebox architectures for closed-loop transcription (ReduNet like)?

• Closed-loop transcription to other types of low-dim structures?
(dynamical, causal, logical, symbolical, graphical, genetic...)

The principles of parsimony and self-consistency shall always rule!
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References: Learning Transcription via Rate Reduction

1 CTRL: Closed-Loop Transcription to an LDR via Minimaxing Rate Reduction
https://arxiv.org/abs/2111.06636 (Entropy 2022)

2 Incremental Learning of Structured Memory via Closed-Loop Transcription
https://arxiv.org/abs/2202.05411 (under submission)

3 ReduNet: A Whitebox Deep Network from Rate Reduction (JMLR 2022):
https://arxiv.org/abs/2105.10446

4 Representation via Maximal Coding Rate Reduction (NeurIPS 2020):
https://arxiv.org/abs/2006.08558

5 Classification via Minimal Incremental Coding Length (NIPS 2007):
http://people.eecs.berkeley.edu/~yima/psfile/MICL_SJIS.pdf

6 Clustering via Lossy Coding and Compression (TPAMI 2007):
http://people.eecs.berkeley.edu/~yima/psfile/Ma-PAMI07.pdf
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More Supporting Materials

White-box Transformers via Sparse Rate Reduction (Sam Buchanan):
https://arxiv.org/abs/2306.01129

A New Textbook:
High-Dim Analysis with Low-Dim Models
https://book-wright-ma.github.io/
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From the foreword by EMMANUEL CANDÈS

“Students will learn a lot from reading this 

book … They will learn about mathematical 

reasoning, they will learn about data models 

and about connecting those to reality, and 

they will learn about algorithms. The book 

also contains computer scripts so that we 

can see ideas in action, and carefully crafted 

exercises making it perfect for upper-level 

undergraduate or graduate-level instruction. 

The breadth and depth make this a refer-

ence for anyone interested in the mathemat-

ical foundations of data science.”

“At the very core of our ability to process 

data stands the fact that sources of informa-

tion are structured. Modeling data, explic-

itly or implicitly, is our way of exposing this 

structure and exploiting it, being the essence 

of the fields of signal and image processing 

and machine learning. The past two decades 

have brought a revolution to our understand-

ing of these facts, and this ‘must-read’ book 

provides the foundations of these recent 

developments, covering theoretical, numer-

ical, and applicative aspects of this field in 

a thorough and clear manner.”

PROFESSOR MICHAEL ELAD, CS Depart-

ment, Technion

Connecting theor y with practice, this 

systematic and rigorous introduction covers 

the fundamental principles, algorithms, and 

applications of key mathematical models 

for high-dimensional data analysis. Compre-

hensive in its approach, it provides unified 

coverage of many dif ferent low-dimen-

sional models and analytical techniques, 

including sparse and low-rank models, 

and both convex and non-convex formula-

tions. Readers will learn how to develop 

efficient and scalable algorithms for solving 

real-world problems, supported by numer-

ous examples and exercises throughout, 

and how to use the computational tools 

learnt in several application contexts. 

Applications presented include scientific 

imaging, communication, face recognition, 

3D vision, and deep networks for classifica-

tion. With code available online, this is an 

ideal text for senior and graduate students 

in electrical engineering, computer science, 

and data science, as well as for those 

taking courses on sparsity, low-dimensional 

structures, and high-dimensional data. 

wright-ma

Cover image created by Robert Webb’s “Stella” 

software: www.software3d.com/Stella.php.

A New Course Berkeley EECS 208:

https://pages.github.berkeley.edu/UCB-EECS208/course_site/

https://book-wright-ma.github.io/Lecture-Slides/

A New International Conference:
Conference on Parsimony and Learning: https://cpal.cc
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Parsimony and self-consistency are governing how to
learn

a compact and structured model for real-world data.

Thank you!

Questions, please?

“What I cannot create, I do not understand.”
– Richard Feynman


	Objectives for Learning from Data
	Precursors and Motivations
	Linear and Discriminative Representation (LDR)

	Closed-Form Information-Theoretical Measure for LDR
	Principle of Maximizing Coding Rate Reduction (MCR2)
	Experimental Verification

	White-Box Deep Networks from Optimizing Rate Reduction
	Deep Networks as Projected Gradient Ascent
	Convolution Networks from Shift Invariance
	Experimental Results

	Closed-Loop Transcription to an LDR (CTRL)
	Conclusions and Open Problems

