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“Everything should be made as simple as possible,
but not any simpler.”
— Albert Einstein
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Precursors and Motivtions
ISTA: Sparse Recovery via ¢! (Wright and Ma, 2022)

CONTEXT - Basic algorithm (ISTA)

Algorithm 8.1 Iterative Soft-Thresholding Algorithm (ISTA) for BPDN
1: Problem: min, 1|y — Az|2 + A||z|1, given y € RY, A € RI*™,
2: Input: p € R" and L > )\max(ATA).

3: while @, not converged (k=1,2,...) do

4: wy — T — %.v‘lT(.A:l:]c — ‘y).

5

6

T

: @pyr  soft(we, A/L). Soft Thresholding
: end while /_’

: OQutput: x, « x;.

Nonlinear Thresholding Relu

Relu(w)
3 0

Linear Operator w=Ax
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Precursors and Motivtions
Learned ISTA (Gregor and LeCun, ICML 2010)

CONTEXT - Learned ISTA (LISTA)

If only interested in one instance: y = Ax AND with many training data: {(y; x)}.

We can optimize the optimization path of ISTA using supervised learning:

Algorithm 3 LISTA::fprop

Algorithm 4 LISTA:bprop

LISTA fprop(X, Z,W., 8,4)
;3 Arguments are passed by reference.

;; variables Z(t), C(t) and B are saved for bprop.

B =W.X; Z(0) = ha(B)

fort=1to T do
C(t)=B+8Z(t—1)
Z(t) = ho(C(1))

end for

Z=Z(T)

5,0,6X,6W,, 45, 40)
Arguments are passed by reference.
3 Variables Z(t), C(t), and B were saved in fprop.
Initialize: 4B = 0; 45 =0: a0 =0
dZ(T) = (Z(T) - Z*)
for t = T down to 1 do
AC(t) = hy(C(t).62(t)
a8 = 66 — sign(C(t)).0C (1)
aB =8B+ 8C(t)
i85 = 68 + 6C (1) Z(t —1)7
dZ(t —1) = §TaC(t)
end for
48 = 8B + hy(B).4Z(0)
a0 = 50 — sign(B).hL(B)SZ(0)
W, = dBXT; 6X = WIéB

LISTA bprop(Z*, X, Z. W,

Learning fast approximations of sparse coding, K. Gregor and Y. LeCun, ICML 2010.
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Sparsity: ¢ or /' Minimization versus ¢* Maximization
Given Y = AX, find A such that X is the sparsest:

min Xllo, X =AY, st. AcO(nR). (1)

—
— L2
L1

Maximizing ¢4 norm promotes
sparsity or sparsity (spikiness):

argmax|([q|, < argmin|q|,.
qeSn qesn

Figure: £*-¢2-, and ¢*-spheres in R?
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Objectives for Learning from Data Precursors and Motivations

Sparse Dictionary Learning via ¢*: the MSP Algorithm
Solve a sparsifying transform A for X = AY by solving the program:

max ¢(A) = |AY [, st A€ OmR), (2)

via projected gradient descent: A;11 = Pon)[Ar +aVap(A)].

The Matching, Stretching, and Projection (MSP) Algorithm:

. Initialize Ay € O(n,R) initialize Ay for iteration
cfort=0,1,...
Vaop(Ay) = 4(AY)3Y* Matching and Stretching
UXV* =SVD[V 4b(Ay)]
A1 =U0V" Project A onto orthogonal group
end for
output: A,.

o g s e

Complete dictionary learning via L4-Norm maximization over the orthogonal group, Zhai
et. al. JMLR 2020.
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Objectives for Learning from Data Precursors and Motivations

“Deep Networks” as Power lteration for Low-Dim
“Fixed point” (not gradient descent) interpretation:

Ars1 = Pow)[Vad(Ar)] = Pog[(AY) Y],
Define “layer” operators and states iteratively:
0A1 = A1 A; and Zyy =AY = 0Aia1 2.
Forward-constructed “deep network” interpretation:

5Ai1 =Pom)(Z1)Z]], X + 6A1410A;---6ALY.

Table: Fixed Points: PCA (Power iteration), ICA (FastlCA), and DL (MSP).

Objectives Constraint Sets Algorithms
Power Iter. ¢(a) = 3 La Y|} we st air1 = Pgn-1 [Vap(at)]
FastICA (a) = fkurt[a*y] aecs™! ai+1 = Pgn-1 [Vatp(ar)]

MSP ¢(A) =1 [|A"Y|; A€ St(k,nR) A = Psienm [Vad(Ar)]
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Objectives for Learning from Data Precursors and Motivations

The Simplest Network Models - PCANet

Second stage

First stage Ouipat loyer
Input layer T,
) 1!
. -
Patch-mean PCA filters. Patch-mean PCA filters Quantization & Concatenated

remaval convolution removal convolution mapping image and

block-wise

histogram

Two layers forward-constructed Recognition rates (%) on FERET dataset.

without back-propagatlon: Probe sets Th Tc | DupT | Dupll | Avg
. simplest data-adaptive mapping LBP [15] 9300 | 5100 | 61.00 375
DMMA [25] 98.10 | 9850 | 81.60 89.60
(PCA), P-LBP [21] 98,00 | 98.00 | 90.00 9275
. . . . POEM [26] 9960 | 9950 | 88.80 93,20
+ simplest nonlinear activation G-LQP (7] 9990 | 100 | 9320 | 91.00 | 9603
. LGBP-LGXP [28] 99.00 | 99.00 | 9400 | 9300 || 9625
(binary), sPOEM+POD [29] | 9970 | 100 | 9490 | w400 [[ 9715
H . GOM [30] 99,90 100 95,70 93,10 97.18
* simplest pooling PCANet-1 (T CD) [ 99.33 | 9948 | §8.07 | BL10 [ 9298
H PCANet-2 (Trn. CD) | 99.67 | 99.48 | 9584 | o402 || 97.25
(histogram). PCANGt] 9950 | o897 | 8989 | 8675 || 9ars
PCANet-2 99.58 100 9543 | w402 97.26

PCANet, Chan and Ma et. al IEEE
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8/89



Objectives for Learning from Data Precursors and Motivations

Pursuit of Sparsity via Transformer Layers
[Vaswani et al., 2017, Dosovitskiy et al., 2020] (see Sam Buchanan'’s lecture)

Multi-Head Attention

1 I Scaled Dot-Proguct ot
H Attention H
I LN LS 1

:

Earlier Later

Layers Layers
A = Softmax (qkT/,/Dh)
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High-Dim Data with Mixed Nonlinear Low-Dim Structures

Figure: High-dimensional Real-World Data: data samples X = [x1,..., &) in
RP lying on a mixture of low-dimensional submanifolds X C U?ZIMJ' C RP.

RD

The main objective of learning from (samples of) such real-world data:

seek a most compact and structured representation of the data.
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Fitting Class Labels via a Deep Network

D R*
R f(z,0) o 0
0 1 0
T — :
0 0 1

Figure: Black Box DNN for Classification: y is the class label of x represented
as a “one-hot" vector in R¥. To learn a nonlinear mapping f(-,0) : & + y, say
modeled by a deep network, using cross-entropy (CE) loss.

min CE(9,.y) = ~E[(y. loglf(,0))] ~ —- 3w loglf (@ 0)). (3

Prevalence of neural collapse during the terminal phase of deep learning training,
Papyan, Han, and Donoho, 2020.
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Fitting Class Labels via a Deep Network

In a supervised setting, using cross-entropy (CE) loss:
1

m

min CE(0, z,y) = —E[(y, log[f(=,0)])] ~ —— > (yiloglf(@i,0)]). ()
i=1
! 2.5 T
Issues (an elephant in the room): 2ol o e lanes |
u == shuffled pixels
® A large deep neural networks can S 1s — random pixels ||
fit arbitrary data and labels. & . +— gaussian
§ 1o}
® Statistical and geometric meaning ® os
of internal features not clear.
0.0
® Task/data-dependent and ¢ thoégandlsieps ©o®
not robust nor truly invariant. Figure: [Zhang et al, ICLR'17]

What did machines actually “learn” from doing this?
In terms of interpolating, extrapolating, or representing the data?
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Objectives for Learning from Data Precursors and Motivations

A Hypothesis: Information Bottleneck
[Tishby & Zaslavsky, 2015]

A feature mapping f(a,0) and a classifier g(z) trained for downstream
classification:
f(z,0)
s

The IB Hypothesis: Features learned in a deep network trying to
max 1B(x,y,2(0)) = I(2(9),y) - BI(2,2(0)), B>0,  (5)
where I(z,y) = H(z) — H(z|y) and H(z) is the entropy of z.

® Minimal informative features z that most correlate with the label y

® Task and label-dependent, consequently sacrificing generalizability,
robustness, or transferability

Yi Ma Design Deep Networks
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Gap between Theory and Practice (a Bigger Elephant)

For high-dimensional real data,
many statistical and information-theoretic concepts such as entropy,
mutual information, K-L divergence, and maximum likelihood:

® curse of dimensionality for computation.
® ill-posed for degenerate distributions.

® lack guarantees with finite (or non-asymptotic) samples.

Reality check: principled formulations are replaced with approximate bounds,
grossly simplifying assumptions, heuristics, even ad hoc tricks and hacks.

How to provide any performance guarantees at all?
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A Principled Computational Approach

For high-dim data with mixed low-dim structures:

learn to compress, and compress to learn!

a) sample points b) noisy samples ) noisy samples with outliers

Generalized PCA for mixture of subspaces [Vidal, Ma, and Sastry, 2005]
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Precursors and Motivtions
1. Clustering Mixed Data (Interpolation)

Assume data X = [x1, X2, ..., Ty
are i.i.d. samples from a mixture
of distributions: p(x,0) = Z?Zl mip;(x, 8).

Classic approaches to cluster the data:
the maximum-likelihood (ML) estimate
via Expectation Maximization (EM):

ngaxE{log(Zﬂ]pj T 9))} ~ r%ixaz:bg(Zﬂ]p] x;, 0 )

7j=1

Difficulties: ML is not well-defined when distributions are degenerate.
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Clustering via Compression
[Yi Ma, Harm Derksen, Wei Hong, and John Wright, TPAMI'07]

A Fundamental ldea:
Data belong to mixed low-dim
structures should be compressible.

Cluster Criterion:

Whether the number of binary bits
required to store the data is less
(information gain):

#bits(X UY) > #bits(X) + #bits(Y)?

“The whole is greater than the sum of the parts.”
— Aristotle, 320 BC
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Objectives for Learning from Data Precursors and Motivations

Coding Length Function for Subspace-Like Data
Theorem (Ma, TPAMI'07)

The number of bits needed to encode data X = [x1, T2, ..., &Ty] € RD*xm
up to a precision ||x — &||2 < € is bounded by:

D D
M2 jogdet (T4 -—-XXT ).
2 me2

L(X,e) =

This can be derived from constructively quantifying SVD of X or by
sphere packing vol(X) as samples of a noisy Gaussian source.
Linear subspace

Gaussian source 026,
T; = Ubi

: J1€1

Uy

RD

Yi Ma

Design Deep Networks

June 7, 2023 18 /89



Cluster to Compress

L(X) > LX) = L(X1) + L(X2) + H(|X1], | X2])?

partitioning:

e o o °
[ o8 %5 %% %o °
x;°
° o o : o . o X, °
o = = E DA
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A Greedy Algorithm

Seek a partition of the data X — [X, Xo,..., X}] such that
min L°(X) = L(X1) + -+ L(Xk) + H(| X1, ..., | X&)
Optimize with a bottom-up pair-wise merging algorithm [Ma, TPAMI'07]:

input: the data X = [z, Z2,...,%,,] € RPX™ and a distortion €2 > 0.
initialize S as a set of sets with a single datum {S = {z} |z € X}.
while |S| > 1 do
choose distinct sets S1, S € S such that
Le(S1 U Ss) — L¢(Sy,S2) is minimal.
if L°(S1 U Ss) — L¢(S1,52) > 0 then break;
else S .= (S \ {Sl, SQ}) U {Sl U SQ}
end
output: S

bl e

®Noa
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Surprisingly Good Performance

Empirically, find global optimum and extremely robust to outliers

350 3
300
250 2
log, €,
¥ 10%
¢ 200 log, &,
150
1
100
50|
8 E) 4 ) [ -4 ) E E
log, & log, &
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Objectives for Learning from Data Precursors and Motivations

Natural Image Segmentation [Mobahi et.al., 1JCV'09]

Compression alone, without any supervision, leads to state of the art
segmentation on natural images (and many other types of data).

(a) Animals b) Buildings ) Landscape ) People (e) Water
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Precursors and Motivtions
2. Classify Mixed Data (Extrapolation)

Assume data X = [x1,x2,..., Ty
are i.i.d. samples from a mixture of
distributions: p(x, ) = Z?:l mip;(x, 8).

Classic approach to classify the data is
via maximum a posteriori (MAP) classifier:

y(x) = argmaxlogp;(x,0) + logm;.
J

Difficulties: distributions p; are hard to estimate and log likelihood is not
well-defined when distributions are degenerate.

(probably why SVMs or deep networks prevail instead...)
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Objectives for Learning from Data Precursors and Motivations

Classify to Compress
[Wright, Tao, Lin, Shum, and Ma, NIPS'07]

A Fundamental ldea:

Count additional #bits needed Le(¥;U{z}) @
to encode a query sample «

with data in each class X;:

0Le(w, ) = Le(XjU{w})—Le(X;)+L(J)-

X = {zi,y; = j}

Classification Criterion: Minimum Incremental Coding Length (MICL):

g(x) = argmin 6L¢(x, ).
J

Law of Parsimony: “Entities should not be multiplied without necessity.”
—William of Ockham
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Objectives for Learning from Data Precursors and Motivations

Asvmptotic Property of MICL

Theorem (Wright, NIPS'07)

As the number of samples m goes to infinity, the MICL criterion converges
at a rate of O(m~'/2) to the following criterion:

2
1
Je(x) = argmax L¢ (ac | pj, 35 + %I) + log 7; +§D€(2j),
J

Regu/arEed MAP

where D (3;) = tr (ZJj (=5 + %I)_l) is the effective dimension.

Everything else equal, MICL prefers a ..'.O?
class with higher effective dimension. /,f’...: R .o.o%f,,/’
/og o @ /
Err on the side of caution! /o® %/ Si
[

Yi Ma Design Deep Networks
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Objectives for Learning from Data Precursors and Motivations

Extrapolation of Low-Dim Structure for Classification

Figure: A truly extrapolating (nearest subspace) classifier!

: :
3. | 1 —
4 4
(a) MICL (b) k-Nearest Neighbors (c) SVM-RBF

Difficulty in practice: inference computationally costly (non-parametric)
and possibly need a kernel (nonlinearity).

Go beyond (non-parametric) data interpolation and extrapolation?

Yi Ma Design Deep Networks
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(OLTNCHVEER TR RETGIT R T NDEY =M Linear and Discriminative Representation (LDR)

Represent Multi-class Multi-dimensional Data

Given samples

d
X =[x1,...,Zm] CU§=1MJ': R R
seek a good represe::ltation W
Z:[zl,...,zm]CR ’ s

through a continuous mapping:
f(x,0):x € RP — 2z € RY

Goals of “re-present” the data:
® compression: from high-dimensional samples to compact features.
® linearization: from nonlinear structures Ué?:l/\/lj to linear U?ZlSj.

® sparsity: from separable components M;'s to incoherent S;'s.
® self-consistent: from compact structured Z back to the data X.
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Linear and Discriminative Representation (LDR)
Seeking a Linear Discriminative Representation (LDR)

Desiderata: Representation z = f(x, ) have the following properties:

@ Within-Class Compressible: Features of the same class/cluster should
be highly compressed in a low-dimensional linear subspace.

@® Between-Class Discriminative: Features of different classes/clusters
should be in highly incoherent linear subspaces.

©® Maximally Informative: Dimension (or variance) of features for each
class/cluster should be the same as that of the data.

Is there a principled objective for all such properties, together?
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Principle of Maximizing Coding Rate Reduction (MCR?)
Compactness Measure for Linear/Gaussian Representation

Linear subspace Gaussian source o969

gi1é1

RD

2€

Theorem (Coding Length, Ma & Derksen TPAMI'07)

The number of bits needed to encode data X = [x1, T2, ..., &Tm] € RD*xm
up to a precision ||x — &||2 < € is bounded by:

D D
L(X,e) = (m;r )logdet (I+ m—EQXXT> .

This can be derived from constructively quantifying SVD of X or by
sphere packing vol(X) as samples of a noisy Gaussian source.
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(T B 2T W I T BV T S TSI MV SE TR T MBI S Principle of Maximizing Coding Rate Reduction (MCR2)

Compactness Measure for Linear/Gaussian Representation

If X is not (piecewise) linear or Gaussian, consider a nonlinear mapping:

0
X =[xy, x2,...,x,] € RPX™ ff) Z() = [z1,22,. .., 2m] € R™,

The average coding length per sample (rate) subject to a distortion e:

d
R(Z,e) = %log det (I + WZZT> . (6)

Rate distortion is an intrinsic
measure for the volume of all features.

vol(Z)
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Principle of Maximizing Coding Rate Reduction (MCR?)
Compactness Measure for Mixed Linear Representations

The features Z of multi-class data

X =X1UX,U--UX CU_M;.

may be partitioned into multiple subsets:

vol(Z')

Z=7Z1UZU---UZ, CU_S;

W.r.t. this partition, the average coding rate is:

R¢(Z,e | I0) :Z logdet< ZHjZT), (7)
7j=1

L4
tr(IIj)eQ

where IT = {I1; € Rmxm};?:l encode the membership of the m samples
in the k classes: the diagonal entry II;(i,¢) of II; is the probability of
sample i belonging to subset j. Q@ ={IT | II; = I,II; > 0.}
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(@[CE B 2T B I T BVt B RIS VICENTER (TA MBI Principle of Maximizing Coding Rate Reduction (MCR2)

Measure for Linear Discriminative Representation (LDR)

A fundamental idea: maximize the difference between the coding rate
of all features and the average rate of features in each of the classes:

k
1 d tr(II;) d
AR(Z,ILe) = 3 log det <I+ EZZT) - j?mf log det (I+ () znjo) :
j=1

R e

This difference is called rate reduction (measuring information gain):

® |arge R: expand all features Z as large as possible.

® Small R°: compress each class Z; as small as possible.

Slogan: similarity contracts and dissimilarity contrasts!
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Principle of Maximizing Coding Rate Reduction (MCR?)
Interpretation of MCR?: Sphere Packing and Counting

vol(Z)

Example: two subspaces S; and S in R2.
® log #(green spheres + blue spheres) = rate of span of all samples R.
® log #(green spheres) = rate of the two subspaces R°.
® log #(blue spheres) = rate reduction AR.
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Closed-Form Information-Theoretical Measure for LDR Principle of Maximizing Coding Rate Reduction (MCR2)

Comparison to Contrastive Learning
[Hadsell, Chopra, and LeCun, CVPR'06]

When £ is large, a randomly chosen pair (x;, x;) is of high probability
belonging to different classes. Minimize the contrastive loss:

exp((zi, 7))
i exp((zi; 25))

min — log

The learned features of such pairs of samples together with their
augmentations Z; and Z; should have large rate reduction:

max » AR;; = R(Z; U Zj,¢) — %(R(ZZ-, €) + R(Zj,¢)).

)

MCR? contrasts triplets, quadruplets, or any number of sets.
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Closed-Form Information-Theoretical Measure for LDR Principle of Maximizing Coding Rate Reduction (MCR2)

Principle of Maximal Coding Rate Reduction (MCR?)
[Yu, Chan, You, Song, Ma, NeurlPS2020]

Learn a mapping f(x, ) (for a given partition II):

f(,0)

X Z(0) 2 AR(Z(6), 11, ) (8)

so as to Maximize the Coding Rate Reduction (MCR?):
max AR(Z(9),I1,¢) = R(Z(0),e) — R°(Z(0),¢ | II),
subject to || Z;(0)||F = m;, IT € Q. (9)

Since AR is monotonic in the scale of Z, one needs to:
normalize the features z = f(x,0) so as to compare Z() and Z(¢')!

Batch normalization, Sergey loffe and Christian Szegedy, 2015.

Layer normalization'16, instance normalization’16; group normalization'18...
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Principle of Maximizing Coding Rate Reduction (MCR2)
Theoretical Justification of the MCR? Principle

Theorem (Informal Statement [Yu et.al., NeurlPS2020])

Suppose Z* = Z7 U --- U Z}; is the optimal solution that maximizes the
rate reduction (9). We have:

® Between-class Discriminative: As long as the ambient space is
adequately large (d > Zle d;), the subspaces are all orthogonal to
each other, i.e. (Z;)TZ; =0 fori #j.

® Maximally Informative Representation: As long as the coding
precision is adequately high, i.e., €* < min; {%%} each subspace

achieves its maximal dimension, i.e. rank(Z5) = d;. In addition, the
largest d; — 1 singular values of Z7 are equal.

A new slogan, beyond Aristotle:
The whole is to be maximally greater than the sum of the parts!
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Closed-Form Information-Theoretical Measure for LDR Experimental Verification

Experiment |: Supervised Deep Learning

Experimental Setup: Train f(x, ) as ResNet18 on the CIFAR10
dataset, feature z dimension d = 128, precision €2 = 0.5.

" M 70

60 60
0 o 50
Pl

gl /L

2 p % 10
s s}
’ 27 [
20 o] 4 FESEsege s s
10 /\/‘\/\'// 0 —o— AR (train) —e— R (train) —e— R (train)
) —— AR —— R e R -e- AR (test) -~ R(test) 8- R (test)
0
100 10! 10* 10* 10" 0 100 200 300 400 500
Number of iterations Epoch

(a) (b)

Figure: (a). Evolution of R, R°, AR during the training process; (b). Training
loss versus testing loss.
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Closed-Form Information-Theoretical Measure for LDR Experimental Verification

Visualization of Learned Representations Z

Components

(a) M CR2 (overall)

ilarity)

Sigular Values

P Conons e ol ]
(d) CE (overall) (e) CE (PCA of every class) (f) CE (cosine similarity)

Figure: PCA of learned representations from MCR? and cross-entropy.

No neural collapse!
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Closed-Form Information-Theoretical Measure for LDR Experimental Verification

Visualization - Samples along Principal Components

Sk PV I REr FYT e ™
c-EONNMFEERAE csENEOSRESE
d ZEA BA I FSNIBCEFEFETET 1.1
AN dESHE c-EEEEFEEaER
-AEEEESNETHE cSEEdEEREER
o ANWEHEEUEINE (|-ANEAEESENAES
cHE-EERENZE -BNTRENEESarEr
DN HEEM -ELBEER=EEaE
cQuEVAREOR czzxERERE=E
«HENMEASE ERBRE - vVEYANERASRE
(a) Bird (b) Ship

Figure: Top-10 “principal” images for class - “Bird” and “Ship” in the CIFAR10.
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Closed-Form Information-Theoretical Measure for LDR Experimental Verification

Experiment Il: Robustness to Label Noise

\RATIO:O.U RATIO=0.1 RATIO=0.2 RATIO=0.3 RATIO=0.4 RATIO=0.5

0.939 0.909 0.861 0.791 0.724 0.603
0.940 0.911 0.897 0.881 0.866 0.843

CE TRAINING
MCR? TRAINING

Table 1: Classification results with features learned with labels corrupted at different levels.

L4 esoooo000000 00
006
007
o
s

%
%4 2 g0
= S w0 3 S
25 20 R 6000000000000
20 '
15 o noise=0.0  —a— noise=03 5. o noise=0.0  —+— noise=03 o o noise=0.0  —+— noise=03
o— noise=0.1 5 s —o— noise=01  —=— noise=0.5 —e— noise=01  —=— noise=0.5
10 e 0
3 E T T TR TR T T R L ) T S0 w0 e oo 250w
Number of iterations Number of iterations Number of iterations
AR(Z(0),11 R(Z Re(Z(0 II
(a) ( ( )’ 76) (b) ( (9)76) (C) 76

Figure: Evolution of R, R®, AR of MCR? during training with corrupted labels.

Represent only what can be jointly compressed.
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Deep Networks from Optimizing Rate Reduction

f(,0)

X Z(0); méiXAR(Z(G),H,e).

Final features learned by MCR? are more interpretable and robust, but:
® The borrowed deep network (e.g. ResNet) is still a “black box"!

® Why is a “deep” architecture necessary, and how wide and deep?

What are the roles of the “linear and nonlinear” operators?

® Why “multi-channel” convolutions?

Replace black box networks with entirely “white box” networks?
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Deep Networks as Projected Gradient Ascent
Projected Gradient Ascent for Rate Reduction

Recall the rate reduction objective:

k
- 1 * 7] J 7k
max AR(Z) = 3 logdet (I—i—aZZ ) ;_1: 5 log det (I+ajzn z ) (10)

R(Z)

R.(Z,II)

where a = d/(me?), aj = d/(tr(I7)e?), v; = tr(Il) /m for j =1,...,k.

Consider directly maximizing AR with projected gradient ascent (PGA):

0AR
Zig1g X Zp+n— subject to  Z,,; c S¢L. (11)
0Z |,
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White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

Gradients of the Two Terms

OR(Z) | 8RC§§’H)

The derivatives =5 are:
1 0logdet(I + aZZ™) a1
- 12
: 57 Z oI +az,Z;) " Z,, (12)
¢ B, crixd
10 (v;logdet(I + a; ZIV Z* o _
2 (108 (aZ ; ) = ya(I+a;ZI0Z)7" ZIV. (13)
Zy -
cj erdxd
Hence the gradient MBLZ(Z) is:
OAR a -
=t - E Z - Z%- C] ZJIUV eR™™ (14)

Expansion Compression
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White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

Interpretation of the Linear Operators E and C’

For any z; € R?, we have

Eizy = a(z)— Zyq;) with ¢ =argminal/z, — Zoqo|3 + || qel|3-
a

Eyzy and CZZg are the “residuals” of z, against the subspaces spanned by

columns of Z, and Z, respectively.

PR B [ O -’
1 t :‘ L SR - - Risk Peaking
. Variance Peaking
o o — Bias
. — Variance

odel Complexity

Such “auto” ridge regressions do not overfit even with redundant random
regressors, due to a “double descent” risk [Yang, ICML'20]!

Yi Ma Design Deep Networks June 7, 2023 44 /89



White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

Incremental Deformation via Gradient Flow

Z Zy

OAR
Zea = Zi |,

Extrapolate the gradient MaLZ(Z) from training samples Z to all z € R%:

k
O0AR j j dxm
5z, " EZZZ—Z%C@ZZ IV e R™™, (15)
¢ J=1 known
k . .
9(20,00) = Epz— Y 7;Clz wl(z) €R% (16)
=1 SN——
unknown
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Deep Networks as Projected Gradient Ascent
Estimate of the Membership 7/(z/)

Estimate the membership 77(z,) with “softmax” on the residuals HC’ngH:

exp (—A||CJ =)
i1 exp (=G z)
Thus the weighted residuals for contracting:

7 (z0) ~ 7 (20) =

€ [0,1]. (17)

k
U([Celzg,...,szg]) = Y yClz-wi(z) €RL (18)
j=1

Many alternatives, e.g. enforcing all features to be in the first quadrant:

k

o(z) ~ z— » ReLU(P]z), (19)
j=1
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White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

The ReduNet for Optimizing Rate Reduction
lterative projected gradient ascent (PGA) :

Zoy1 X zZg+1- [Em+a([cgz£,...,cfzz])] st. zep €S (20)

g(ze,60)
f(x,0) = ¢pLopt o 0¢(x), with ¢(2¢,0,) = Psa1[ze+-9(2e,00)].
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, M|
________ L
0a] ---[e); [=0 [
. £ ,7 )
‘i/’_>__>1
'

Figure: One layer of the ReduNet: one PGA iteration.
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Deep Networks as Projected Gradient Ascent
The ReduNet versus ResNet or ResNeXt

lterative projected gradient ascent (PGA):

Zgy1 X zp+ M- [Egzg +0([C}z, .. .70525])} stz €S (21)

9(z¢,60)

Figure: Left: ReduNet. Middle and Right: ResNet [He et. al. 2016] and
ResNeXt [Xie et. al. 2017] (hundreds of layers).

Forward construction instead of back propagation!?

Y The Forward-Forward Algorithm, G. Hinton, 2022.
T



White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

The ReduNet versus Mixture of Experts
Approximate iterative projected gradient ascent (PGA) :

Zi41 X zZp+1- [Eng +0’([C€12g, .. .,CéCZg])} st. zpy1 € Sd_l, (22)

9(z¢,0¢)
0
,,,,,,,, — 1 o
fal---[al [a] [1] e —

Figure: Left: ReduNet layer. Right: Mixture of Experts [Shazeer et. al. 2017] or
Switched Transformer [Fedus et. al. 2021] (1.7 trillion parameters).

Forward construction instead of back propagation!?

2The Forward-Forward Algorithm, G. Hinton, 2022.
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White-Box Deep Networks from Optimizing Rate Reduction Deep Networks as Projected Gradient Ascent

ReduNet Features for Mixture of Gaussians
L =2000-Layers ReduNet: m = 500, = 0.5,¢ = 0.1.

1.0 P 1.0

S &
=
\

0.0

—0.5 —0.5 fine

-1.0 -1.0 0

) 1500 1750 2000

-10 -05 0.0 0.5 1.0 -1.0 =05 00 0.5 1.0 Lil)'(‘l'ﬁ

35 [ -

0250 500 750 1000 1250 1500 1750 2000
Layers

Figure: Left: original samples X and ReduNet features Z = f(Z,0) for 2D and
3D Mixture of Gaussians. Right: plots for the progression of values of the rates.
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Group Invariant Classification

Feature mapping f(x, @) is invariant to a group of transformations:

Group Invariance: f(xog,0) ~ f(x,0), VgeG, (23)

where “~" indicates two features belonging to the same equivalent class.

(olojojomm /] (] UIN] AW, BN
NEEE ﬂzxg ===

BEEEE ZEdal
0[0]0]S] MEEA
SEEE HI.IJ HEEAa

Figure: Left: 1D rotation S'; Right: 2D cyclic translation 72.

X
T Ehls
N2
N N
SEIE

1. Fooling CNNs with simple transformations, Engstrom et.al., 2017.

2. Why do deep convolutional networks generalize so poorly to small image transformations? Azulay & Weiss, 2018.
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White-Box Deep Networks from Optimizing Rate Reduction @IVl TIeTy NN ST ol i7eTy ST 1T A [ IVETEET e

Group Invariant Classification

Feature mapping f(x, @) is invariant to a group of transformations:

Group Invariance: f(xog,0) ~ f(x,0), VgeG, (24)

where “~" indicates two features belonging to the same equivalent class.

Figure: Embed all equivariant samples to the same subspace.
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Circulant Matrix and Convolution

Given a vector z = [29, 21, - .., 2n—1]" € R™, we may arrange all its circular
shifted versions in a circulant matrix form as

20 Zp—-1 ... 23 21
21 20 Zn-1 22
crc(z) = : 2 oz - eR™".  (25)
Zn—2 : - o Zn—1
| Zn—1 Z"Fn—2 N Z1 20 i

A circular (or cyclic) convolution:

n—1
circ(z) - x =z®x, where (z®x); = g T Zitn—jmod n- (26)
Jj=0
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Convolution Networks from Shift Invariance
Convolutions from Cyclic Shift Invariance

Given a set of sample vectors Z = [z}, ™1, construct the ReduNet
from cyclic-shift augmented families Z = [circ(z!), ..., circ(z™)].

Proposition (Convolution Structures of E and C”)

The linear operator in the RedulNet:

I-I—achc Yeirc(z%)* )_1

is a circulant matrix and represents a circular convolution:
FEz=e® z,

where e is the first column vector of E. Similarly, the operators C7
associated with subsets Z’ are also circular convolutions.
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Tradeoff between Invariance and Separability
A problem with separability: superposition of

shifted “delta” functions can generate any other signals:
span|circ(x)] = R"!

A necessary assumption: x is sparsely generated
from incoherent dictionaries for different classes:

@ = [circ(Dy), circ(Ds), . .., circ(Dy)] z.

— m™
4 1e= JAN

Fish

P
NN
\

[\

Y
C convolution kernels

/ sparse\ \ Z
] .= o e O ~

C convolution kernels
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White-Box Deep Networks from Optimizing Rate Reduction @IVl TIeTy NN ST ol i7eTy ST 1T A [ IVETEET e

Tradeoff between Invariance and Separability

A basic idea: estimate sparse codes Z by taking their responses to
multiple analysis filters k1, ..., kc € R™ [Rubinstein & Elad 2014]:

z=Tlki®z,... ke®z|" eRO" (27)

for some entry-wise “sparsity-promoting” operator 7 (-).

spams
— < N ~ Z
8= \ N
. | \
% T\
\ ) oy
%,
C convolution kernels h
' E " Lifting & Thresholding sparse
C—
IR= ) R
— O% N\
\ %, L
—J “e,

C convolution kernels
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Multi-Channel Convolutions

Given a set of multi-channel sparse codes Z = [z!, ..., 2™], construct the
ReduNet from their circulant families Z = [circ(z!), ..., circ(z™)].

Proposition (Convolution Structures of E and C”)

The linear operator in the RedulNet:

I-I-ozZarc )circ(2')* )_1 e ROnxCn

is a block circulant matrix and represents a multi-channel convolution:
E(z)=ée®z cR",

where € is the first slice of E. Similarly, the operators C’ associated with
subsets Z’ are also multi-channel circular convolutions.

Yi Ma Design Deep Networks
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White-Box Deep Networks from Optimizing Rate Reduction @IVl TIeTy NN ST ol i7eTy ST 1T A [ IVETEET e

Multi-Channel Convolutions

v
v w
C C C C N
u " u "
! input @ ce e |:l> H output
data &l &2 &k & data
cube 8 B Y cube

Figure: E and C7 are automatically multi-channel convolutions!

Yi Ma
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

The Convolution ReduNet versus Scattering Network
Iterative projected gradient ascent (PGA) for invariant rate reduction:

1 x 2+ Bzt o((Clz,. .. Chal)), (28)

9(2¢,6¢)
with each layer being a fixed number of multi-channel convolutions!

(=]
lf * ¥y | = ¥y [ ¥ryem| 11 %y | # vy | 4 0y

S s v S B GNPV ANV

P I . ln : 1 =l b s \\ / \ // 1 2T o+ sy
(o ,L, — IR \V I V0l
i ; 1=ty Vs \ / 1f 5ty |+ ¥isey

o
"""""""""""""""""""""""" Iet-i0
Fig. 2 Sctcring nctwork architctue based on wavelet filrs and the modulus no-lincariy. The clments of the feature sector uy () i (1) ae indicated
Ze+1 at the tips of the amows.

Figure: Left: ReduNet layer. Right: Scatterting Network [J. Bruna and S.
Mallat, 2013] [T. Wiatowski and H. Blcskei, 2018] (only 2-3 layers).
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

Fast Computation in Spectral Domain

Fact: all circulant matrices can be simultaneously diagonalized by the
discrete Fourier transform F': circ(z) = F*DF.

m -1 F* 0 o0 Dy - Dic rF o o1\ !
. N _q _ ) ) CxnC
<I+é C|rc(z1)arc(z’)*> =|I+ o o Do l:o -_.0] € RO X
i=1 0 0 F* D¢y -+ Dcc 0 0 F

where Dj; are all diagonal of size n.

Computing the inverse is O(C3n) in the spectral domain, instead of
O(C3n3)! Learning convolutional networks for invariant classification is
naturally far more efficient in the spectral domain/

Nature: In visual cortex, neurons encode and transmit information in
frequency, hence called “spiking neurons” [Softky & Koch, 1993; Eliasmith &
Anderson, 2003].
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White-Box Deep Networks from Optimizing Rate Reduction Convolution Networks from Shift Invariance

A “White Box” Deep Convolutional ReduNet by Construction (Spectral Domain)

Require: Zc RCXTXM, II, ¢ > 0, X, and a learning rate 7.

. _ _cC _ el k _ (M) k
Liseta= - {a; = s b= 1 = T =
2: set Vo = {8 (p) € CO}I 2" = DFT(Z) € COXTxm,
3:fore=1,2,...,Ldo
4: forp=0,1,...,T —1do
5: Compute £y(p) € CE*C and {5; (p) € CCXC}?:l as
Ee(p) = a-[I+a-Ve1(p)- Vem1(@)*] 7"
Clp) = oy [I+a; Ve_1(p) TV - Vo1 ()*] 71
6: end for
7: fori=1,...,m do
8: forp=0,1,...,T — 1do
9: Compute {5’ (p) = C} (p) - B(p) € COX1}r_;
10: end for . .
11: Let {P,7 = [p (0),...,p; (T —1)] € CT*T}r_;
12 Compute {73 = M}k
LTSk exp(—aB g L=t
13: forp=0,1,...,T —1do
14: 55(p) = o1 () + n (EeP)B(p) = Sh_y v - 7 - CL(p) - 5(0);
15: end for .
16: o = oL / |1kl Fi
17: end for _
18: Set Zy = IDFT(V}) as the feature at the ¢-th layer;
) B _ _ (119 _ o
19: 2 7o (logdetlI +aV(p) - Va(p)*] — ) tog det(T + oy Vi (p) - 117 - Ve(p)*]);
20: end for

Ensure: features Z,, the learned filters {€4(p)}y, ), and {ég (P)}j,e,p-

Yi Ma Design Deep Networks June 7, 2023
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White-Box Deep Networks from Optimizing Rate Reduction

Overall Process (the Elephant)

Multi-Class
Signals

Lifting &
Sparse Coding

Invariant

Rate Reduction

Necessary components:

® sparse coding for class separability;
® deep networks maximize rate reduction;
® spectral computing for shift-invariance;

® convolution, normalization, nonlinearity...

Yi Ma

Design Deep Networks
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: 1D Cyclic Shift Invariance of 0 and 1
2000 training samples, 1980 testing, C = 5, L =3500-layers ReduNet.

x 5

[ololojolm /1 /LN
NOER NEEE
olojolomm—1-1/1/]
QJoJololm ) NN
SREE S=REE

Figure: Left: Multi-channel feature representation of an image in polar coordinates.
Right: Example of training/testing samples.
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Similarity Similarity

Figure: Left: Rates along the layers; Middle: cross-class cosine similarity among
trainings; Right: similarity among testings.
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Experiment: 1D Cyclic Shift Invariance of 0 and 1

T

Figure: Left two: heat maps for training and testing. Right two: heat maps for one pair
of samples at every possible shift.

Table: Network performance on digits with all rotations.

REDUNET REDUNET (INVARIANT)
AcC (ORIGINAL TEST DATA) 0.983 0.996
AccC (TesT wiTH ALL SHIFTS) 0.707 0.993

1. Fooling CNNs with simple transformations, Engstrom et.al., 2017.

2. Why do deep convolutional networks generalize so poorly to small image transformations? Azulay & Weiss, 2018.
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: 1D Cyclic Shift Invariance of All 10 Digits
100 training samples, 100 testing, C' = 20, L =40-layers ReduNet.

0 - ——— Or

) 00 S0 1200 1600 2000

Figure: Heatmaps of cosine similarity among shifted training data Xgir (left) and
learned features Zgin (right).

0.30
0.25

Z o020
015
.

0.0 +

0.05
0,

i 5 0.0 02 04 0.6 08 1.0
Layers Similarity

Figure: Left: Rates evolution with iterations; Right: histograms of the cosine similarity
(in absolute value) between all pairs of features across different classes.
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: 2D Cyclic Translation Invariance

1000 for training, 500 for testing, C' = 5, L =2000-layers ReduNet.

\

a i

~

EHI
/]
]
/|

N

\\
NEN

RN
ARNN

Table: Network performance on digits with all translations.

REDUNET REDUNET (INVARIANT)

Acc (ORIGINAL TEST DATA)
Acc (Test witn ALL SHIFTS)

0.975
0.909

1. Fooling CNNs with simple transformations, Engstrom et.al., 2017.

2. Why do deep convolutional networks generalize so poorly to small image transformations? Azulay & Weiss, 2018.

Yi Ma Design Deep Networks
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Experiment: 2D Cyclic Trans. Invariance of All 10 Digits
100 training samples, 100 testing, C' = 75, L =25-layers ReduNet.

0 10 S

100 100

800

1200 12004

0 400 800 120 1600

) 100 s00 120 1600

Figure: Heatmaps of cosine similarity among shifted training data Xgir (left) and
learned features Zgin (right).

Count

0 5 10 15 20 25
Layers

0.0 02 Sl\;]lnla\lllbl\ 08 L0
Figure: Left: Rates evolution with iterations; Right: histograms of the cosine similarity
(in absolute value) between all pairs of features across different classes.
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Experiment: Back Propagation of ReduNet (MNIST)

2D cyclic trans. of 10 digits, 500 training samples, all testing, C' = 16,
L =30-layers invariant ReduNet.

Initialization  Backpropagation  Test Accuracy

v X 89.8%
X v 93.2%
v v 97.8%

Table: Test accuracy of 2D translation-invariant ReduNet, ReduNet-bp (without
initialization), and ReduNet-bp (with initialization) on the MNIST dataset.

® Backprop: the ReduNet architecture can be fine-tuned by SGD and
achieves better standard accuracy after back propagation;

e Initialization: using ReduNet for initialization can achieve better
performance than the same architecture with random initialization.
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Experimental Resus
Experiment: Back Propagation of ReduNet (CIFAR-10)

Figure: A ReduNet-inspired architecture

Table: Classification performance of ReduNet-inspired architecture on CIFAR10.

RELU \ TRAIN Acc  TEST Acc

v 0.9997 0.8327
X 0.9970 0.6542
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Conclusions: Learn to Compress and Compress to Learn!

Principles of Parsimony:
® Clustering via compression: mingy R(X, IT)
¢ Classification via compression: min,; 6 R°(x, 7)

® Representation via maximizing rate reduction: maxz AR(Z,II)

OAR

® Deep networks via optimizing rate reduction: Z = URE >

A Unified Framework:
® A principled objective for all settings of learning: information gain

® A principled approach to interpret deep networks: optimization

“Everything should be made as simple as possible, but not simpler.”
— Albert Einstein
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White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Conclusions: Learn Linear Discriminative Representations

Compared to conventional deep neural networks:

H Conventional DNNs ‘ ReduNets ‘

Objectives label fitting information gain
Deep architectures trial & error iterative optimization
Layer operators empirical projected gradient

Shift invariance

CNNs+augmentation

invariant ReduNets

Initializations

random /pre-design

forward computed

Training/fine-tuning

back prop

forward /back prop

Interpretability

black box

white box

Representations

hidden/latent

incoherent subspaces

Yi Ma Design Deep Networks
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Open Problems: Theory

MCR?:  max  AR(Z,ILe€) = R(Z,e) — R°(Z,e | I0).
ZCSe-1TIe

® Phase transition phenomenon in clustering via compression?

Statistical justification for robustness of MCR? to label noise?

Optimal configurations for broader conditions and distributions?

Fundamental tradeoff between sparsity and invariance?

Jointly optimizing both representation Z and clustering I17

0AR 0AR

Joint Dynamics: Z = n- FA II=~- EhE

Yi Ma Design Deep Networks June 7, 2023 72/89



= T
Open Problems: Architectures and Algorithms

ReduNet: Z,,; o Z +1- {éf@)zwra([é} @@,...,é’j@id)] € st

® New architectures from accelerated gradient schemes?

Conditions for channel-wise separable and short convolutions?

Architectures from invariant rate reduction for other groups?

3

Transformer:

z
ORZ)|  _ \(1402,2}) 2 ~ o[ Zi - a2 Z; Z)] .
0Z |y, )

self-attention head

Algorithmic architectures (or networks) for optimizing II?

3 Attention: Self-Expression Is All You Need, Rene Vidal,2022:
s



White-Box Deep Networks from Optimizing Rate Reduction Experimental Results

Open Directions: Extensions
® Data with other dynamical or graphical structures.

® Better transferability and robustness w.r.t. low-dim structures.
e Combine with a generative model (a generator or decoder).

® Sparse coding, spectral computing, subspace embedding in nature.*

Cell

The Code for Facial Identity in the Primate Brain

sparse coding in visual cortex
\ [ |

NOEENES 11

IIIIHIII ..-=g== Rate coding hypothesis: the signal conveyed
Iil IHIHHI!.IIIH by a neuron is in the rote of spiking. Spiking
irregularity is largely due to noise and does

not convey information.

*figures from Bruno Olshausen of Neuroscience Dept., UC Berkeley.
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Closed-Loop Transcription to an LDR (CTRL)

From Open-Loop to Closed-Loop Representation

f(,0)

MCR?: X Z(0): meaxAR(Z(Q),H,e).

Features learned are more interpretable, independent, rich, and robust.
Nevertheless:

® Anything missing, anything unexpected: dim(X;) = dim(Z;)?

® Can we go from the feature Z; back to the data X7

® |Is the learned LDR adequate to generate real-world (visual) data?

Can we establish an autoencoding between the data and the LDR:

f(,0)

X z(0) 2", X7 (29)
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Low-dim Autoencoding for High-Dim Data

Assumption: the data X lie on a low-dimensional submanifold X ¢ M
or multiple ones: X C Ule./\/tj in a high-dimensional space € RP:

RD

Goal: seeking a low-dim representation Z in R% (d < D) for the data X
on low-dim submanifolds such that:

(z,0)

XcR? 1",z crd B0 L% xR, (30)

Yi Ma Design Deep Networks June 7, 2023 76 /89



Closed-Loop Transcription to an LDR (CTRL)

CTRL: Dual Roles of the Encoder and Decoder

f is both an encoder and sensor; and g is both a decoder and controller.
They form a closed-loop feedback control system:

oL 0.0 .0

A closed-loop notion of “self-consistency”’ between Z and Z is achieved
by a pursuit-evasion game between f as a “evader” and g as a “pursuer”:

k
D(X, X) = maxmin y_ AR(f(X;,0), /(9(f(X;,0).0).0)).  (31)
i=1 ~

Zj (9) Zj ('9’77)
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Closed-Loop Transcription to an LDR (CTRL)

Overall CTRL Objective: Self-Consistency & Parsimony

The overall minimax game between the encoder f and decoder g:
® f maximizes the rate reduction of the features Z of the data X;

® g minimizes the rate reduction of the features Z of the decoded X.

A minimax program to learn a multi-class LDR for data X = U;‘?:lXj:

k
max min AR(f(X,0)) + AR(M(X.0,1)) + Z AR(f(X;,0),h(X;,0,7m))

. ) =1 - .
Expansive encode Compressive decode J Contrastive & Contractive

with h(z) = f o go f(x), or equivalently

k
max min AR(Z(0)) + AR(Z(0.m)) +>_ AR(Z;(0), Z;(0,7)).

n -
J=1
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Closed-Loop Transcription to an LDR (CTRL)

Characteristics of the Overall CTRL Objective

k
max min AR(Z(0)) + AR(Z(0,m)) + Z AR(Z;(6), Z;(6,n))-

e Simplicity: all terms are closed-form rate reduction on features.

® Self-consistency: enforced by closed-loop encoding and decoding.
® Structured: distribution of learned features Z is an LDR.

® No need to specify a prior or a surrogate target distribution.

® No need of any direct explicit distance between X and X.

® No more approximations or bounds for (KL-, JS-, W-) “distances”.

® No heuristics or regularizing terms in the objective.

Parsimony and self-consistency are all you need to model X?
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Incremental Learning via Closed-Loop Transcription

High-dim data space X Low dim LDR feature space Z
- encoder

e

closed-loop
transcription

_

decoder

new input data X, : feature of old and new memory: Z°, 7!, Z2
replayed from memory X = g(2): & | R feature from replay loop Z = f(X) : Vs Z ,Zz

max min  AR(Z) 4+ AR(Z) + AR(Znew, Znew)
Z

subject to  AR(Zuig, Zoa) = 0. (32)

Incremental Learning of Structured Memory, arXiv:2202.05411 .
No Catastrophic Forgetting.
ICLR 2023
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Closed-Loop Transcription to an LDR (CTRL)

Unsupervised Learning via Closed-Loop Transcription

ngh dim data space X Low dim LDR feature space Z
. encoder . N .

o e |

closed-loop
transcription
(z,m)

e wh =)

decoder

max min R(Z) + AR(Z, Z) (33)
n
subject to ZAR(zfmm}, 2l ) =0, and ZAR (z%,28) = 0.
ieEN 1EN

Unsupervised Learning of Structured Representation,
arXiv:2210.16782. No Catastrophic Forgetting.
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Whitebox Network as Sparse Dictionary Learning (SDNet)

Use iterative convolution sparse coding (via ISTA) as layers.

Model size, memory, speed, and accuracy all comparable to ResNet.

gzl — a(z" — A% x Al z)

Res Block Dataset Architecture Model Size ~ Top-1 Acc Memory Speed
ResNet-18 [15] 11.2M 9554%  10GB  1600w/s
n ._,! ,! o— » gnEL ResNet-34 [15] 2LIM 9557%  20GB  1000ws

z o(x) z CIFAR-10 MDEQ [21] 1LIM 9380%  20GB  90ws

SCN [9] 0.7M 9436%  100GB  39ws
SDNet-18 (ours) 11.2M 9520%  12GB  1500ws

SDNet-34 (ours)  2L.IM 9557%  24GB 900 ws
ISTA Block x ResNet-18 [15] 11.2M 77.82% 1L.OGB 1600 n/s
T i 1 ResNet-34 [15] 2LIM 7839%  20GB  1000ws

! i ClFAR.00  MDEQL21] 11.2M 7412%  20GB  90ws

Zn IGJ_L_G — 8(x) » gml SCN [9] 07M 8007%  100GB 39w
SDNet-18 (ours) 8.2M 7831%  12GB  1500ws

SDNet-34 (ours) 102M 7848%  24GB 900 ws
ResNet-18 [15] 1.7M 6898%  24.1GB  2100n/s
Zn*1 = g(z“ —t-AT @ (Asz" — x)) ResNet-34 [15] 21.5M 72.83%  32.3GB 1400 w/s
ImageNet SCN [9] 9.8M 7042%  95.1GB  Slws
. 1 ) SDNet-18 (ours) 1.7M 60.47%  37.6GB  1800n/s
z* = argmin A|lz||, + 3 lx— A® z|I3 SDNet-34 (ours)  21.5M 7261%  464GB  1200n/s
z

More Stable to Noises and More Robust to Perturbations.

NeurlPS 2022
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Closed-Loop Transcription to an LDR (CTRL)

Transcription via Convolution Sparse Autoencoding

Res Block
" _I:t! -+ a(x) -+ znt?

ISTA Block

—l—».—ej—i'e—-ﬁ(x)—'z““

Mog(z' -t A" @ (Arz" = 1))

Z = g(z" — A2 = A # 2™)

1
z" = argmin | z||, +§ lx— A4 ® 2|2
z

P - ~we .
. Slfare welght RN B
I E I AZ A} AE w SD-layer
encoder decoder
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Conclusions and Open Problems

Conclusions: Closed-Loop Transcription to an LDR

a universal learning engine: transform external real-world data to a
compact and structured internal (LDR) representation.

® parsimony: optimization of a information theoretical measure of rate
reduction via an encoder and decoder.

® self-consistency: a pursuit-evasion game between a sensor and
generator through a closed-loop feedback system.

® white box: learning objectives, network architectures, and learned
representations.
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Open Mathematical Problems about CTRL

For the closed-loop minimax rate reduction program:

k
meaxmin AR(Z(9)) + AR(Z(@, n) + Z AR(Z;(9),Z;(6,n)).

n =

® optimality: characterization of the equilibrium points?

¢ convergence of the closed-loop control problem (infinite-dim)?

¢ linearization of distribution supports (plastic manifold learning)?
¢ optimal density of the distributions (Brascamp-Lieb inequalities)?
¢ correct model selection (no under- or over-fitting)?

® guarantees for approximate sample-wise auto-encoding?
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Conclusions and Open Problems

Open Directions: Extensions and Connections

® How to scale up to hundreds and thousands of classes?
(variational forms for rate reduction, CVPR’22...)

Internal computational mechanisms for memory forming (in Nature)?
(incremental /unsupervised learning without catastrophic forgetting.)

Better feedback for generative quality and discriminative property?

Whitebox architectures for closed-loop transcription (ReduNet like)?

Closed-loop transcription to other types of low-dim structures?
(dynamical, causal, logical, symbolical, graphical, genetic...)

The principles of parsimony and self-consistency shall always rule!
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More Supporting Materials

White-box Transformers via Sparse Rate Reduction (Sam Buchanan):
https://arxiv.org/abs/2306.01129

A New Textbook: = ’ Hi[g)g't[;An;;gga'
High-Dim Analysis with Low-Dim Models
https://book-wright-ma.github.io/

with
Low-Dimensional

A New Course Berkeley EECS 208:

https://pages.github.berkeley.edu/UCB-EECS3208/course_site/
https://book-wright-ma.github.io/Lecture-Slides/

A New International Conference:
Conference on Parsimony and Learning: https://cpal.cc
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Parsimony and self-consistency are governing how to
learn
a compact and structured model for real-world data.

Thank you!
Questions, please?

“What | cannot create, | do not understand.”
— Richard Feynman
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