
Towards Constituting Mathematical Structures for Learning to
Optimize

Zhangyang "Atlas" Wang, UT Austin

1 / 40

(Most slides are generously shared by Dr. Jialin Liu, Dr. Xiaohan Chen,
and Dr. Wotao Yin, Alibaba DAMO)

Outline

1. Introduction

2. LISTA: An Intuitive Example

3. Towards More General Cases

4. Diving Deeper on Explanation

2 / 40

Outline

1. Introduction

2. LISTA: An Intuitive Example

3. Towards More General Cases

4. Diving Deeper on Explanation

3 / 40

Learning to Optimize

Consider an optimization problem

min
x∈Rn

F (x)

Instead of manually designing an iterative algorithm

xk+1 = TF (xk)

One may learn an update rule from data

xk+1 = TF (xk; θ)

where the parameter θ is obtained by minimizing a loss function

min
θ∈Θ

EF ∈FL(xK(θ))

The set F consists of all instances of interest.
The process of minimizing the loss function is named training.
Such methodology is named Learning to Optimize (L2O).

4 / 40

Examples

Example I: Learned ISTA (LISTA) [Gregor and LeCun, 2010]

• LASSO: F = {(1/2)∥Ax − b∥2 + λ∥x∥1 : A ∈ Rm×n,b ∈ Rm}
• Choose a baseline algorithm ISTA: xk+1 = proxθk

(xk −αkA⊤(Axk − b))
• Parameterization: xk+1 = proxθk

(W1,kxk + W2,kb)

Example II: Learning a rule for step size [Xiong et al., 2022]

• Deep learning:
F = {f(x) : f is the loss function of training neural networks}

• Choose a baseline algorithm SGD: xk+1 = xk − αkgk, where gk is the
stochastic gradient.

• Parameterization: αk = NN(xk,gk; θ).

Sample instances from F and Learn an algorithm.
The learned algorithm works well on unseen instances in F .

5 / 40

Examples

Example I: Learned ISTA (LISTA) [Gregor and LeCun, 2010]

• LASSO: F = {(1/2)∥Ax − b∥2 + λ∥x∥1 : A ∈ Rm×n,b ∈ Rm}
• Choose a baseline algorithm ISTA: xk+1 = proxθk

(xk −αkA⊤(Axk − b))
• Parameterization: xk+1 = proxθk

(W1,kxk + W2,kb)

Example II: Learning a rule for step size [Xiong et al., 2022]

• Deep learning:
F = {f(x) : f is the loss function of training neural networks}

• Choose a baseline algorithm SGD: xk+1 = xk − αkgk, where gk is the
stochastic gradient.

• Parameterization: αk = NN(xk,gk; θ).

Sample instances from F and Learn an algorithm.
The learned algorithm works well on unseen instances in F .

5 / 40

Discussions and Motivations

A tradeoff:

• A baseline algorithm works for a broad class of problems
• One may design advanced algorithms for specific algorithms

L2O provides a uniform tool to obtain customized algorithms without domain
knowledge.

Questions:

• Can we find principles from learned algorithms?
• Can we use domain knowledge to regularize the models?

6 / 40

Discussions and Motivations

A tradeoff:

• A baseline algorithm works for a broad class of problems
• One may design advanced algorithms for specific algorithms

L2O provides a uniform tool to obtain customized algorithms without domain
knowledge.

Questions:

• Can we find principles from learned algorithms?
• Can we use domain knowledge to regularize the models?

6 / 40

Discussions and Motivations

A tradeoff:

• A baseline algorithm works for a broad class of problems
• One may design advanced algorithms for specific algorithms

L2O provides a uniform tool to obtain customized algorithms without domain
knowledge.

Questions:

• Can we find principles from learned algorithms?
• Can we use domain knowledge to regularize the models?

6 / 40

ML vs OPT

Machine learning (ML) is induction

• (problems, answers) are given for training
• ML learns to give answers in the future

Optimization (OPT) is prescription

• (problems, evaluations) are given, not answers
• OPT finds answers with best evaluations

Learning to optimize (L2O) combines ML and OPT to obtain “better” solutions “faster”, by learning
from records of optimization.

3 / 39

Classic vs Learned
Classic OPT:

• Experts hand-built algorithms based on theory and experience
For example, Simplex Method and Nesterov Accelerated Gradient Method

• Algorithms are written as iterations in a few lines
• Practitioners pick an algorithm to use

L2O:

• Experts propose L2O templates and training procedures
• Practitioners

• pick an L2O template
• prepare training data
• apply a training procedure
→ obtain a trained algorithm for future problems

• Practitioners are more involved in the design process

4 / 39

Papers and Coauthors

This talk is based on the following articles:

• J. Liu, X. Chen, Z. Wang, W. Yin, and H. Cai. “Towards Constituting
Mathematical Structures for Learning to Optimize.” ICML 2023.

• X. Chen, J. Liu, Z. Wang, and W. Yin. “Hyperparameter Tuning is All
You Need for LISTA.” NeurIPS 2021.

• J. Liu, X. Chen, Z. Wang, and W. Yin. “ALISTA: Analytic weights are as
good as learned weights in LISTA.” ICLR 2019.

• X. Chen, J. Liu, Z. Wang, and W. Yin. “Theoretical Linear Convergence of
Unfolded ISTA and its Practical Weights and Thresholds.” NeurIPS 2018.

7 / 40

Outline

1. Introduction

2. LISTA: An Intuitive Example

3. Towards More General Cases

4. Diving Deeper on Explanation

8 / 40

LASSO and ISTA

LASSO: assume b = Ax∗ + noise; recover x∗ by solving

min
x

1
2∥Ax − b∥2

2 + λ∥x∥1

also known as ℓ1-regularized least-squares and compressed sensing

Iterative soft-thresholding algorithm (ISTA):

xk+1 = ηλα

(
xk − αA⊤(Axk − b)

)
• convergence requires a proper stepsize α or line search
• the gradient-descent step reduces 1

2 ∥Ax − b∥2

• the soft-thresholding step ηλα(·) reduces λ∥x∥1

9 / 40

LASSO and ISTA

LASSO: assume b = Ax∗ + noise; recover x∗ by solving

min
x

1
2∥Ax − b∥2

2 + λ∥x∥1

also known as ℓ1-regularized least-squares and compressed sensing

Iterative soft-thresholding algorithm (ISTA):

xk+1 = ηλα

(
xk − αA⊤(Axk − b)

)
• convergence requires a proper stepsize α or line search
• the gradient-descent step reduces 1

2 ∥Ax − b∥2

• the soft-thresholding step ηλα(·) reduces λ∥x∥1

9 / 40

Learned ISTA [Gregor and LeCun, 2010]

Introduce scalar θ = λα and matrices W1 = αA⊤ and W2 = I − αA⊤A.

Rewrite ISTA as
xk+1 = ηθ(W1b + W2xk).

Introduce θk,W1,k,W2,k, k = 0, 1, . . . ,K − 1, as free parameters and define

xk+1 = ηθk (W1,kb + W2,kxk), k = 0, 1, · · · ,K − 1.

Once {θk,W1,k,W2,k}K−1
k=0 are determined, we obtain a new algorithm.

Find parameters such that the algorithm converges very fast for a set of
LASSO instances with the same A.

10 / 40

Learned ISTA [Gregor and LeCun, 2010]

Introduce scalar θ = λα and matrices W1 = αA⊤ and W2 = I − αA⊤A.

Rewrite ISTA as
xk+1 = ηθ(W1b + W2xk).

Introduce θk,W1,k,W2,k, k = 0, 1, . . . ,K − 1, as free parameters and define

xk+1 = ηθk (W1,kb + W2,kxk), k = 0, 1, · · · ,K − 1.

Once {θk,W1,k,W2,k}K−1
k=0 are determined, we obtain a new algorithm.

Find parameters such that the algorithm converges very fast for a set of
LASSO instances with the same A.

10 / 40

Fix random matrix A, generate a set of sparse x∗,i, with varying supports, and
bi = Ax∗,i + noisei. Form the training set F = {(x∗,i,bi)}.

Fix a small K > 0, and train the parameters by applying SGD to

min
{θk,W1,k,W2,k}K−1

k=0

E(x∗,b)∈F ∥xK(b) − x∗∥2
2 .

After the NN is trained with K = 16:

0 100 200 300 400 500 600 700 800

-40

-30

-20

-10

0

N
M

S
E

 (
d

B
)

ISTA (= 0.1)

ISTA (= 0.05)

ISTA (= 0.025)

LISTA

The trained NN is called Learned ISTA (LISTA).

11 / 40

Weight coupling
Given the superb performance,
can we find some principles from the learned algorithm?

Suppose the learned algorithm is an “ideal” algorithm: exactly recover x∗ given
infinite many steps.

Theorem
Assume no noise. If LISTA has xk → x∗ as k → ∞ uniformly for all sparse x∗,
then the parameters {θk,W1,k,W2,k}∞

k=0 must satisfy the relation

W2,k + W1,kA → I, as k → ∞.

Indeed, training confirms the claims:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.5

1

1.5

2

2.5

3

12 / 40

Weight coupling
Given the superb performance,
can we find some principles from the learned algorithm?

Suppose the learned algorithm is an “ideal” algorithm: exactly recover x∗ given
infinite many steps.

Theorem
Assume no noise. If LISTA has xk → x∗ as k → ∞ uniformly for all sparse x∗,
then the parameters {θk,W1,k,W2,k}∞

k=0 must satisfy the relation

W2,k + W1,kA → I, as k → ∞.

Indeed, training confirms the claims:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.5

1

1.5

2

2.5

3

12 / 40

Weight coupling
Given the superb performance,
can we find some principles from the learned algorithm?

Suppose the learned algorithm is an “ideal” algorithm: exactly recover x∗ given
infinite many steps.

Theorem
Assume no noise. If LISTA has xk → x∗ as k → ∞ uniformly for all sparse x∗,
then the parameters {θk,W1,k,W2,k}∞

k=0 must satisfy the relation

W2,k + W1,kA → I, as k → ∞.

Indeed, training confirms the claims:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.5

1

1.5

2

2.5

3

12 / 40

Weight coupling
Given the superb performance,
can we find some principles from the learned algorithm?

Suppose the learned algorithm is an “ideal” algorithm: exactly recover x∗ given
infinite many steps.

Theorem
Assume no noise. If LISTA has xk → x∗ as k → ∞ uniformly for all sparse x∗,
then the parameters {θk,W1,k,W2,k}∞

k=0 must satisfy the relation

W2,k + W1,kA → I, as k → ∞.

Indeed, training confirms the claims:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

0.5

1

1.5

2

2.5

3

12 / 40

Therefore, we enforce
W2,k = I − W1,kA,

for all k, yielding the iteration:

xk+1 = ηθk (xk + W1,k(b − Axk)).

We call it weight coupling (CP).

Parameters
O(n2K +mnK) reduce−→ O(mnK),

significant reduction if m < n (which is often the case).

After this reduction, training also appears to be more stable.

13 / 40

Therefore, we enforce
W2,k = I − W1,kA,

for all k, yielding the iteration:

xk+1 = ηθk (xk + W1,k(b − Axk)).

We call it weight coupling (CP).

Parameters
O(n2K +mnK) reduce−→ O(mnK),

significant reduction if m < n (which is often the case).

After this reduction, training also appears to be more stable.

13 / 40

Empirical Settings

Normalized MSE (NMSE) in dB:

NMSE(x̂,x∗) = 20 log10 (∥x̂ − x∗∥2/∥x∗∥2)

Tests:

• m = 250, n = 500, sparsity s ≈ 50.
• Aij ∼ N (0, 1/

√
m), iid. A is column-normalized.

• Magnitudes were sampled from standard Gaussian.

14 / 40

Weight coupling (CP)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-50

-40

-30

-20

-10

0

ISTA

FISTA

AMP

LISTA

LISTA-CP

CP stabilizes intermediate results.
Same final recovery quality.

15 / 40

Outline

1. Introduction

2. LISTA: An Intuitive Example

3. Towards More General Cases

4. Diving Deeper on Explanation

16 / 40

A general L2O model

Consider minx∈Rn F (x).
A baseline manually designed algorithm: gradient descent with momentum:

vk+1 =βkvk + (1 − βk)∇F (xk),

xk+1 =xk − αkvk+1, k = 0, 1, 2, . . .

Andrychowicz et al. [2016] proposed to learn a parameterized algorithm:

dk,hk =LSTM
(
xk,∇F (xk),hk−1;ϕ

)
xk+1 =xk − dk

by minimizing a loss function

min
ϕ

EF ∈F

K∑
k=1

F (xk)

Term “LSTM” means a long short-term memory cell.

17 / 40

Numerical results

18 / 40

Some discussions

Observation: The learned update rule may diverge on unseen instances.
This is still an active topic in the literature. [Wichrowska et al., 2017, Wu
et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]

Question: Can we find those conditions that dk should satisfy if we assume
xk → x∗?

Preparations:
• Assumptions on the objective function F :
(Smooth case) F (x) = f(x), where f is convex and differentiable with
Lipschitz continuous gradient
(Nonsmooth case) F (x) = r(x), where r is proper, closed and convex.
(Composite case) F (x) = f(x) + r(x)

• Assumptions on the update direction {dk}

19 / 40

Some discussions

Observation: The learned update rule may diverge on unseen instances.
This is still an active topic in the literature. [Wichrowska et al., 2017, Wu
et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]

Question: Can we find those conditions that dk should satisfy if we assume
xk → x∗?

Preparations:
• Assumptions on the objective function F :
(Smooth case) F (x) = f(x), where f is convex and differentiable with
Lipschitz continuous gradient
(Nonsmooth case) F (x) = r(x), where r is proper, closed and convex.
(Composite case) F (x) = f(x) + r(x)

• Assumptions on the update direction {dk}

19 / 40

Some discussions

Observation: The learned update rule may diverge on unseen instances.
This is still an active topic in the literature. [Wichrowska et al., 2017, Wu
et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]

Question: Can we find those conditions that dk should satisfy if we assume
xk → x∗?

Preparations:
• Assumptions on the objective function F :
(Smooth case) F (x) = f(x), where f is convex and differentiable with
Lipschitz continuous gradient
(Nonsmooth case) F (x) = r(x), where r is proper, closed and convex.
(Composite case) F (x) = f(x) + r(x)

• Assumptions on the update direction {dk}

19 / 40

Some discussions

Observation: The learned update rule may diverge on unseen instances.
This is still an active topic in the literature. [Wichrowska et al., 2017, Wu
et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]

Question: Can we find those conditions that dk should satisfy if we assume
xk → x∗?

Preparations:
• Assumptions on the objective function F :
(Smooth case) F (x) = f(x), where f is convex and differentiable with
Lipschitz continuous gradient
(Nonsmooth case) F (x) = r(x), where r is proper, closed and convex.
(Composite case) F (x) = f(x) + r(x)

• Assumptions on the update direction {dk}

19 / 40

Basic settings for smooth case

The update direction dk is generated by LSTM
(
xk,∇f(xk),hk−1;ϕ

)

Write dk = m
(
xk,∇f(xk),hk−1;ϕ

)
where m is a parameterized operator

With mk(·, ·) := m(·, ·,hk−1), we write dk = mk

(
xk,∇f(xk);ϕ

)
Let’s consider a more general update rule

xk+1 = xk − dk(xk,∇f(xk))

where dk is an operator picked from

DC(R2n) =
{

d : R2n → Rn
∣∣ d is differentiable, ∥Jd(z)∥F ≤ C, ∀z ∈ Z

}
.

• Training needs derivatives of dk.
• Many existing parameterization approaches yield dk ∈ DC(R2n).

20 / 40

Basic settings for smooth case

The update direction dk is generated by LSTM
(
xk,∇f(xk),hk−1;ϕ

)
Write dk = m

(
xk,∇f(xk),hk−1;ϕ

)
where m is a parameterized operator

With mk(·, ·) := m(·, ·,hk−1), we write dk = mk

(
xk,∇f(xk);ϕ

)
Let’s consider a more general update rule

xk+1 = xk − dk(xk,∇f(xk))

where dk is an operator picked from

DC(R2n) =
{

d : R2n → Rn
∣∣ d is differentiable, ∥Jd(z)∥F ≤ C, ∀z ∈ Z

}
.

• Training needs derivatives of dk.
• Many existing parameterization approaches yield dk ∈ DC(R2n).

20 / 40

Basic settings for smooth case

The update direction dk is generated by LSTM
(
xk,∇f(xk),hk−1;ϕ

)
Write dk = m

(
xk,∇f(xk),hk−1;ϕ

)
where m is a parameterized operator

With mk(·, ·) := m(·, ·,hk−1), we write dk = mk

(
xk,∇f(xk);ϕ

)

Let’s consider a more general update rule

xk+1 = xk − dk(xk,∇f(xk))

where dk is an operator picked from

DC(R2n) =
{

d : R2n → Rn
∣∣ d is differentiable, ∥Jd(z)∥F ≤ C, ∀z ∈ Z

}
.

• Training needs derivatives of dk.
• Many existing parameterization approaches yield dk ∈ DC(R2n).

20 / 40

Basic settings for smooth case

The update direction dk is generated by LSTM
(
xk,∇f(xk),hk−1;ϕ

)
Write dk = m

(
xk,∇f(xk),hk−1;ϕ

)
where m is a parameterized operator

With mk(·, ·) := m(·, ·,hk−1), we write dk = mk

(
xk,∇f(xk);ϕ

)
Let’s consider a more general update rule

xk+1 = xk − dk(xk,∇f(xk))

where dk is an operator picked from

DC(R2n) =
{

d : R2n → Rn
∣∣ d is differentiable, ∥Jd(z)∥F ≤ C, ∀z ∈ Z

}
.

• Training needs derivatives of dk.
• Many existing parameterization approaches yield dk ∈ DC(R2n).

20 / 40

Core Assumptions

What conditions should the update rule follow?

• (Global Convergence) For any sequences {xk}∞
k=0 generated by the given

rule, there exists x∗ ∈ arg minx∈Rn f(x) such that limk→∞ xk = x∗.

Fixed point assumption: xk+1 = x∗ as long as xk = x∗:

x∗ = x∗ − dk(x∗,∇f(x∗))

Convex analysis theory tells us ∇f(x∗) = 0, and we obtain dk(x∗,0) = 0.
• (Asympototic Fixed Point Condition) Formally, we relax it and assume

lim
k→∞

dk(x∗,0) = 0

for any x∗ ∈ arg minx∈Rn f(x).

The two assumptions are coined as (GC) and (FP), respectively.

21 / 40

Core Assumptions

What conditions should the update rule follow?
• (Global Convergence) For any sequences {xk}∞

k=0 generated by the given
rule, there exists x∗ ∈ arg minx∈Rn f(x) such that limk→∞ xk = x∗.

Fixed point assumption: xk+1 = x∗ as long as xk = x∗:

x∗ = x∗ − dk(x∗,∇f(x∗))

Convex analysis theory tells us ∇f(x∗) = 0, and we obtain dk(x∗,0) = 0.
• (Asympototic Fixed Point Condition) Formally, we relax it and assume

lim
k→∞

dk(x∗,0) = 0

for any x∗ ∈ arg minx∈Rn f(x).

The two assumptions are coined as (GC) and (FP), respectively.

21 / 40

Core Assumptions

What conditions should the update rule follow?
• (Global Convergence) For any sequences {xk}∞

k=0 generated by the given
rule, there exists x∗ ∈ arg minx∈Rn f(x) such that limk→∞ xk = x∗.

Fixed point assumption: xk+1 = x∗ as long as xk = x∗:

x∗ = x∗ − dk(x∗,∇f(x∗))

Convex analysis theory tells us ∇f(x∗) = 0, and we obtain dk(x∗,0) = 0.
• (Asympototic Fixed Point Condition) Formally, we relax it and assume

lim
k→∞

dk(x∗,0) = 0

for any x∗ ∈ arg minx∈Rn f(x).

The two assumptions are coined as (GC) and (FP), respectively.

21 / 40

Core Assumptions

What conditions should the update rule follow?
• (Global Convergence) For any sequences {xk}∞

k=0 generated by the given
rule, there exists x∗ ∈ arg minx∈Rn f(x) such that limk→∞ xk = x∗.

Fixed point assumption: xk+1 = x∗ as long as xk = x∗:

x∗ = x∗ − dk(x∗,∇f(x∗))

Convex analysis theory tells us ∇f(x∗) = 0, and we obtain dk(x∗,0) = 0.

• (Asympototic Fixed Point Condition) Formally, we relax it and assume

lim
k→∞

dk(x∗,0) = 0

for any x∗ ∈ arg minx∈Rn f(x).

The two assumptions are coined as (GC) and (FP), respectively.

21 / 40

Core Assumptions

What conditions should the update rule follow?
• (Global Convergence) For any sequences {xk}∞

k=0 generated by the given
rule, there exists x∗ ∈ arg minx∈Rn f(x) such that limk→∞ xk = x∗.

Fixed point assumption: xk+1 = x∗ as long as xk = x∗:

x∗ = x∗ − dk(x∗,∇f(x∗))

Convex analysis theory tells us ∇f(x∗) = 0, and we obtain dk(x∗,0) = 0.
• (Asympototic Fixed Point Condition) Formally, we relax it and assume

lim
k→∞

dk(x∗,0) = 0

for any x∗ ∈ arg minx∈Rn f(x).

The two assumptions are coined as (GC) and (FP), respectively.

21 / 40

Core Assumptions

What conditions should the update rule follow?
• (Global Convergence) For any sequences {xk}∞

k=0 generated by the given
rule, there exists x∗ ∈ arg minx∈Rn f(x) such that limk→∞ xk = x∗.

Fixed point assumption: xk+1 = x∗ as long as xk = x∗:

x∗ = x∗ − dk(x∗,∇f(x∗))

Convex analysis theory tells us ∇f(x∗) = 0, and we obtain dk(x∗,0) = 0.
• (Asympototic Fixed Point Condition) Formally, we relax it and assume

lim
k→∞

dk(x∗,0) = 0

for any x∗ ∈ arg minx∈Rn f(x).

The two assumptions are coined as (GC) and (FP), respectively.

21 / 40

A Preliminary Result

Theorem

For any f and any operator sequence {dk}∞
k=0 that satisfies (GC) and (FP),

there exist Pk ∈ Rn×n and bk ∈ Rn satisfying

dk(xk,∇f(xk)) = Pk∇f(xk) + bk,

with Pk is bounded and bk → 0 as k → ∞.

• A “good” update rule is not totally free.
• It covers many optimization algorithms, such as accelerated GD,
quasi-Newton methods, etc.
• Instead of learning dk, one may learn a preconditioner Pk and a bias bk

xk+1 = xk − Pk

(
xk;ϕ

)
∇f(xk) − bk

(
xk;ψ

)
,

22 / 40

A Preliminary Result

Theorem

For any f and any operator sequence {dk}∞
k=0 that satisfies (GC) and (FP),

there exist Pk ∈ Rn×n and bk ∈ Rn satisfying

dk(xk,∇f(xk)) = Pk∇f(xk) + bk,

with Pk is bounded and bk → 0 as k → ∞.

• A “good” update rule is not totally free.

• It covers many optimization algorithms, such as accelerated GD,
quasi-Newton methods, etc.
• Instead of learning dk, one may learn a preconditioner Pk and a bias bk

xk+1 = xk − Pk

(
xk;ϕ

)
∇f(xk) − bk

(
xk;ψ

)
,

22 / 40

A Preliminary Result

Theorem

For any f and any operator sequence {dk}∞
k=0 that satisfies (GC) and (FP),

there exist Pk ∈ Rn×n and bk ∈ Rn satisfying

dk(xk,∇f(xk)) = Pk∇f(xk) + bk,

with Pk is bounded and bk → 0 as k → ∞.

• A “good” update rule is not totally free.
• It covers many optimization algorithms, such as accelerated GD,
quasi-Newton methods, etc.

• Instead of learning dk, one may learn a preconditioner Pk and a bias bk

xk+1 = xk − Pk

(
xk;ϕ

)
∇f(xk) − bk

(
xk;ψ

)
,

22 / 40

A Preliminary Result

Theorem

For any f and any operator sequence {dk}∞
k=0 that satisfies (GC) and (FP),

there exist Pk ∈ Rn×n and bk ∈ Rn satisfying

dk(xk,∇f(xk)) = Pk∇f(xk) + bk,

with Pk is bounded and bk → 0 as k → ∞.

• A “good” update rule is not totally free.
• It covers many optimization algorithms, such as accelerated GD,
quasi-Newton methods, etc.
• Instead of learning dk, one may learn a preconditioner Pk and a bias bk

xk+1 = xk − Pk

(
xk;ϕ

)
∇f(xk) − bk

(
xk;ψ

)
,

22 / 40

Nonsmooth case

On nonsmooth problems minx r(x), a direct extension to gradient descent is
sub-gradient descent: xk+1 = xk − αkgk, gk ∈ ∂r(xk).

Such explicit rule suffers from convergence issues.

An implicit rule like proximal point algorithm (PPA) converges much better:

xk+1 = xk − αkgk+1, gk+1 ∈ ∂r(xk+1).

Back to L2O, we choose an implicit rule:

xk+1 = xk − dk(xk+1,gk+1), gk+1 ∈ ∂r(xk+1).

23 / 40

Nonsmooth case

On nonsmooth problems minx r(x), a direct extension to gradient descent is
sub-gradient descent: xk+1 = xk − αkgk, gk ∈ ∂r(xk).

Such explicit rule suffers from convergence issues.

An implicit rule like proximal point algorithm (PPA) converges much better:

xk+1 = xk − αkgk+1, gk+1 ∈ ∂r(xk+1).

Back to L2O, we choose an implicit rule:

xk+1 = xk − dk(xk+1,gk+1), gk+1 ∈ ∂r(xk+1).

23 / 40

Nonsmooth case

On nonsmooth problems minx r(x), a direct extension to gradient descent is
sub-gradient descent: xk+1 = xk − αkgk, gk ∈ ∂r(xk).

Such explicit rule suffers from convergence issues.

An implicit rule like proximal point algorithm (PPA) converges much better:

xk+1 = xk − αkgk+1, gk+1 ∈ ∂r(xk+1).

Back to L2O, we choose an implicit rule:

xk+1 = xk − dk(xk+1,gk+1), gk+1 ∈ ∂r(xk+1).

23 / 40

Nonsmooth case

On nonsmooth problems minx r(x), a direct extension to gradient descent is
sub-gradient descent: xk+1 = xk − αkgk, gk ∈ ∂r(xk).

Such explicit rule suffers from convergence issues.

An implicit rule like proximal point algorithm (PPA) converges much better:

xk+1 = xk − αkgk+1, gk+1 ∈ ∂r(xk+1).

Back to L2O, we choose an implicit rule:

xk+1 = xk − dk(xk+1,gk+1), gk+1 ∈ ∂r(xk+1).

23 / 40

Implicit rule:

xk+1 = xk − dk(xk+1,gk+1), gk+1 ∈ ∂r(xk+1). (1)

Theorem

For each r and any {dk}∞
k=0 that satisfies (GC) and (FP), there exist

Pk ∈ Rn×n and bk ∈ Rn such that (1) yields
xk+1 = xk − Pkgk+1 − bk, gk+1 ∈ ∂r(xk+1),

with Pk is bounded and bk → 0 as k → ∞. If we further assume Pk ≻ 0,
xk+1 can be uniquely determined through xk+1 = proxr,Pk

(xk − bk).

The proximal operator proxr,Pk
is defined with proxr,P(x̄) := arg minx r(x)+ 1

2 ∥x−x̄∥2
P−1 .

• Global Convergence and Asymptotic Fixed Point Condition imply (1) yields a
structure.
• A generalized proximal point algorithm. Fix Pk = αI,bk = 0, it reduces to
PPA.

24 / 40

Composite Case

Consider the composite case minx f(x) + r(x). We analyze a mixed rule

xk+1 = xk − dk(xk,∇f(xk),xk+1,gk+1), gk+1 ∈ ∂r(xk+1). (2)

Theorem

For any f, r, {dk}∞
k=0 that satisfies (GC) and (FP), there exist Pk ∈ Rn×n and

bk ∈ Rn such that (2) yields

xk+1 = xk − Pk(∇f(xk) − gk+1) − bk, gk+1 ∈ ∂r(xk+1),

with Pk is bounded and bk → 0 as k → ∞. If we further assume Pk ≻ 0,
xk+1 can be uniquely determined given xk through

xk+1 = proxr,Pk
(xk − Pk∇f(xk) − bk). (3)

With Pk = αI,bk = 0, (3) reduces to Proximal Gradient Descent (PGD).

25 / 40

Longer Horizen

Introduce an extra variable yk that encodes historical information

yk = m(xk,xk−1, · · · ,xk−T).

Insert yk to the previous update rule

xk+1 = xk − dk(xk,∇f(xk),xk+1,gk+1,yk,∇f(yk)), gk+1 ∈ ∂r(xk+1)

Theorem

Suppose T = 1. For any f, r,m, {dk}∞
k=0 that satisfies (GC) and (FP), there

exist P1,k,P2,k,Ak ∈ Rn×n and b1,k,b2,k ∈ Rn satisfying
xk+1 = xk − (P1,k − P2,k)∇f(xk) − P2,k∇f(yk) − b1,k

− P1,kgk+1 − Bk(yk − xk), gk+1 ∈ ∂r(xk+1),

yk+1 = (I − Ak)xk+1 + Akxk + b2,k

for all k = 0, 1, 2, · · · , with {P1,k,P2,k,Ak} bounded and b1,k → 0,b2,k → 0
as k → ∞.

26 / 40

L2O Model and Parameterization

If we further assume P1,k is uniformly symmetric positive definite, then we can
substitute P2,kP−1

1,k with Bk and obtain
x̂k = xk − P1,k∇f(xk),

ŷk = yk − P1,k∇f(yk),

xk+1 = proxr,P1,k

(
(I − Bk)x̂k + Bkŷk − b1,k

)
,

yk+1 = xk+1 + Ak(xk+1 − xk) + b2,k.

We suggest using diagonal matrices for P1,k,Bk,Ak in practice:
P1,k = diag(pk), Bk = diag(bk), Ak = diag(ak),

where pk,bk,ak ∈ Rn are vectors.
We model pk, ak, bk, b1,k, b2,k as the output of LSTM:

ok,hk = LSTM
(
xk,∇f(xk),hk−1;ϕLSTM

)
,

pk,ak,bk,b1,k,b2,k = MLP(ok;ϕMLP).

27 / 40

L2O Model and Parameterization

If we further assume P1,k is uniformly symmetric positive definite, then we can
substitute P2,kP−1

1,k with Bk and obtain
x̂k = xk − P1,k∇f(xk),

ŷk = yk − P1,k∇f(yk),

xk+1 = proxr,P1,k

(
(I − Bk)x̂k + Bkŷk − b1,k

)
,

yk+1 = xk+1 + Ak(xk+1 − xk) + b2,k.

We suggest using diagonal matrices for P1,k,Bk,Ak in practice:
P1,k = diag(pk), Bk = diag(bk), Ak = diag(ak),

where pk,bk,ak ∈ Rn are vectors.

We model pk, ak, bk, b1,k, b2,k as the output of LSTM:

ok,hk = LSTM
(
xk,∇f(xk),hk−1;ϕLSTM

)
,

pk,ak,bk,b1,k,b2,k = MLP(ok;ϕMLP).

27 / 40

L2O Model and Parameterization

If we further assume P1,k is uniformly symmetric positive definite, then we can
substitute P2,kP−1

1,k with Bk and obtain
x̂k = xk − P1,k∇f(xk),

ŷk = yk − P1,k∇f(yk),

xk+1 = proxr,P1,k

(
(I − Bk)x̂k + Bkŷk − b1,k

)
,

yk+1 = xk+1 + Ak(xk+1 − xk) + b2,k.

We suggest using diagonal matrices for P1,k,Bk,Ak in practice:
P1,k = diag(pk), Bk = diag(bk), Ak = diag(ak),

where pk,bk,ak ∈ Rn are vectors.
We model pk, ak, bk, b1,k, b2,k as the output of LSTM:

ok,hk = LSTM
(
xk,∇f(xk),hk−1;ϕLSTM

)
,

pk,ak,bk,b1,k,b2,k = MLP(ok;ϕMLP).

27 / 40

Ablation Study

We compare

• PBA12: pk,ak,bk,b1,k,b2,k are all learnable.
• PBA1: pk,ak,bk,b1,k are learnable; b2,k = 0.
• PBA2: pk,ak,bk,b2,k are learnable; b1,k = 0.
• PBA: pk,ak,bk are learnable; b2,k = b1,k = 0.
• PA: pk,ak are learnable; b2,k = b1,k = 0; bk = 1.
• P: only pk is learnable; ak = b2,k = b1,k = 0; bk = 1.
• A: only ak is learnable; b2,k = b1,k = 0; bk = 1; pk = (1/L)1.

on more challenging LASSO settings: A is not fixed; each LASSO instance
takes an independently generated A.

28 / 40

Ablation study: Results

0 25 50 75 100 125 150 175 200
Iteration k

10 6

10 4

10 2

100

(F
(x

k)
F *

)/F
*

P
A
PA
PBA
PBA1
PBA2
PBA12

0 25 50 75 100 125 150 175 200
Iteration k

10 5

10 3

10 1 ||b1, k||
||b2, k||

29 / 40

Final model

We adopt (PA) and fix b1,k = b2,k = 0 and bk = 1.

ok,hk = LSTM
(
xk,∇f(xk),hk−1;ϕLSTM

)
,

pk,ak = MLP(ok;ϕMLP),

xk+1 = proxr,pk

(
yk − pk ⊙ ∇f(yk)

)
,

yk+1 = xk+1 + ak ⊙ (xk+1 − xk).

Instead of learning the update rule, we suggest learning a preconditioner pk

and an accelerator ak.

30 / 40

Comparison: In-Distribution Test

100 101 102 103

Iteration k
10 8

10 6

10 4

10 2

100

102

(F
(x

k)
F *

)/F
*

ISTA
FISTA
Ada-LISTA
L2O-DM
L2O-RNNprop
L2O-PA
Adam
AdamHD

Figure: LASSO: Train and test on synthetic data.

100 101 102 103

Iteration k

10 6

10 4

10 2

(F
(x

k)
F *

)/F
* ISTA

FISTA
L2O-DM
L2O-RNNprop
L2O-PA
Adam
AdamHD

Figure: Logistic: Train and test on synthetic data. 31 / 40

Comparison: Out-of-Distribution Test

100 101 102 103

Iteration k
10 8

10 6

10 4

10 2

100

(F
(x

k)
F *

)/F
* ISTA

FISTA
L2O-DM
L2O-RNNprop
L2O-PA
Adam
AdamHD

Figure: LASSO: Train on synthetic data and test on real data (BSDS500).

100 101 102 103

Iteration k

10 6

10 4

10 2

(F
(x

k)
F *

)/F
* ISTA

FISTA
L2O-DM
L2O-RNNprop
L2O-PA
Adam
AdamHD

Figure: Logistic: Train on synthetic data and test on real data (Ionosphere). 32 / 40

Outline

1. Introduction

2. LISTA: An Intuitive Example

3. Towards More General Cases

4. Diving Deeper on Explanation

33 / 40

Further analysis

Recall LISTA-CP model:

xk+1 = ηθk (xk − W1,k(Axk − b)).

Assume b = Ax∗ + noise, where supp(x∗) is uniformly distributed.

Liu et al. [2019] shows that the recovery error and convergence rate only
depend on

sup
k

max
1≤i ̸=j≤n

|w⊤
i,kaj |

• wi,k is the i-th column of W1,k; aj is the j-th column of A.
• W1,k are scaled such that w⊤

i,kai = 1 for all i = 1, 2, · · · , n.
• One might minimize the non-diagonal terms of W⊤

1,kA independently for
each k.
• An extension to mutual coherence in compressive sensing.

34 / 40

Further analysis

Recall LISTA-CP model:

xk+1 = ηθk (xk − W1,k(Axk − b)).

Assume b = Ax∗ + noise, where supp(x∗) is uniformly distributed.

Liu et al. [2019] shows that the recovery error and convergence rate only
depend on

sup
k

max
1≤i ̸=j≤n

|w⊤
i,kaj |

• wi,k is the i-th column of W1,k; aj is the j-th column of A.
• W1,k are scaled such that w⊤

i,kai = 1 for all i = 1, 2, · · · , n.
• One might minimize the non-diagonal terms of W⊤

1,kA independently for
each k.
• An extension to mutual coherence in compressive sensing.

34 / 40

Further analysis

Recall LISTA-CP model:

xk+1 = ηθk (xk − W1,k(Axk − b)).

Assume b = Ax∗ + noise, where supp(x∗) is uniformly distributed.

Liu et al. [2019] shows that the recovery error and convergence rate only
depend on

sup
k

max
1≤i ̸=j≤n

|w⊤
i,kaj |

• wi,k is the i-th column of W1,k; aj is the j-th column of A.
• W1,k are scaled such that w⊤

i,kai = 1 for all i = 1, 2, · · · , n.
• One might minimize the non-diagonal terms of W⊤

1,kA independently for
each k.
• An extension to mutual coherence in compressive sensing.

34 / 40

Parameter reduction: tie W1 across iterations
Inspired by the analysis, let us try W1,k tied for all k. Write it as W.
• Tied LISTA (TiLISTA) iteration:

xk+1 = ηθk (xk − γkW⊤(Axk − b)).

Parameters:
O(mnK) reduce−→ O(mn+K),

We learn only step sizes {γk}k and thresholds {θk}k and a single matrix W.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer (k)

0

10

20

30

40

50

60

70

NM
SE

 (d
B)

LISTA-CPSS
TiLISTA

TiLISTA works even slightly better than LISTA-CPSS

35 / 40

Parameter reduction: tie W1 across iterations
Inspired by the analysis, let us try W1,k tied for all k. Write it as W.
• Tied LISTA (TiLISTA) iteration:

xk+1 = ηθk (xk − γkW⊤(Axk − b)).

Parameters:
O(mnK) reduce−→ O(mn+K),

We learn only step sizes {γk}k and thresholds {θk}k and a single matrix W.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Layer (k)

0

10

20

30

40

50

60

70

NM
SE

 (d
B)

LISTA-CPSS
TiLISTA

TiLISTA works even slightly better than LISTA-CPSS
35 / 40

Observation

We scale W such that w⊤
i ai = 1 for i = 1, . . . , n and then measure

max1≤i̸=j≤n |w⊤
i aj | in TiLISTA. Compare it to ALISTA (next slide).

0 10 20 30 40 50 60 70 80 90 100
Training Step (k)

0.20

0.22

0.24

0.26

0.28

0.30

M
ut

ua
l C

oh
er

en
ce

TiLISTA
ALISTA

Good W needs to have small mutual coherence to A.

36 / 40

Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .

Two steps:

1. Compute approximately optimal W̃:

W̃ ∈ argmin
W∈Rm×n

∥∥W⊤A
∥∥2

F
, s.t. w⊤

i ai = 1, ∀i = 1, 2, · · · , n,

which is a convex quadratic program (QP).
2. With W̃ fixed, learn {γk, θk}k from data

Parameters:
O(mn+K) reduce−→ O(K).

Training takes only minutes.

37 / 40

Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .

Two steps:

1. Compute approximately optimal W̃:

W̃ ∈ argmin
W∈Rm×n

∥∥W⊤A
∥∥2

F
, s.t. w⊤

i ai = 1, ∀i = 1, 2, · · · , n,

which is a convex quadratic program (QP).

2. With W̃ fixed, learn {γk, θk}k from data

Parameters:
O(mn+K) reduce−→ O(K).

Training takes only minutes.

37 / 40

Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .

Two steps:

1. Compute approximately optimal W̃:

W̃ ∈ argmin
W∈Rm×n

∥∥W⊤A
∥∥2

F
, s.t. w⊤

i ai = 1, ∀i = 1, 2, · · · , n,

which is a convex quadratic program (QP).
2. With W̃ fixed, learn {γk, θk}k from data

Parameters:
O(mn+K) reduce−→ O(K).

Training takes only minutes.

37 / 40

Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .

Two steps:

1. Compute approximately optimal W̃:

W̃ ∈ argmin
W∈Rm×n

∥∥W⊤A
∥∥2

F
, s.t. w⊤

i ai = 1, ∀i = 1, 2, · · · , n,

which is a convex quadratic program (QP).
2. With W̃ fixed, learn {γk, θk}k from data

Parameters:
O(mn+K) reduce−→ O(K).

Training takes only minutes.

37 / 40

Numerical evaluation

Noiseless case
(SNR=∞)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-75

-65

-55

-45

-35

-25

-15

-5

N
M

S
E

 (
d

B
)

ISTA

FISTA

LISTA

LISTA-CPSS

TiLISTA

ALISTA

Noisy case
(SNR=30dB)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-50

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

N
M

S
E

 (
d

B
)

ISTA

FISTA

LISTA

LISTA-CPSS

TiLISTA

ALISTA

38 / 40

Robust ALISTA
Consider ỹ = Ãx + ε with Ã = A + εA. Given Ã and ỹ, recover x. Must handle varying Ã.

Unroll an algorithm into an NN to generate W̃ for Ã.

Method:
1. train an NN (called encoder) with many pairs of (Ã, W̃)
2. train an ALISTA (called decoder) with many (Ã, ỹ, W̃ , x)
3. jointly train them with many (Ã, ỹ, W̃ , x)

31 / 39

Numerical results
Fix an A. Training:

• Non-robust LISTA methods used their W matrices obtained with A.
• Robust ALISTA trained with perturbed A (Gaussian σ = 0.03).

Testing: All methods tested with perturbed A’s (Gaussian σ1, σ2, · · · ≤ 0.03).

-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

-70

-50

-30

-10

10

30

50

N
M

S
E

 (
d
B

)

Robust ALISTA is significantly more robust.
32 / 39

HyperLISTA [Chen et al., 2021]

Introduce

• a hybrid-thresholding operator to bypass pk largest entries and soft-threshold the rest
• analytic formulas for the parameters
• three hyper-parameters subject to grid search

Significance:

• allow the parameters to be “instance optimal”
• proves ∃ parameters to obtain superlinear-like error reduction

35 / 39

HyperLISTA learns c1, c2, c3 > 0 and use them to set

θk = c1µ
∥∥A†(Axk − b)

∥∥
1
, soft threshold

βk = c2µ ∥xk∥0, momentum stepsize

pk = c3 min

(
log
(

∥A†b∥1

∥A†(Axk − b)∥1

)
, n

)
, pass-through count

The formulas are motivated by the analysis but use xk instead of xtrue.

Parameters:
O(K) reduce−→ 3.

Training can be done by grid search or a global optimization method.

36 / 39

HyperLISTA learns c1, c2, c3 > 0 and use them to set

θk = c1µ
∥∥A†(Axk − b)

∥∥
1
, soft threshold

βk = c2µ ∥xk∥0, momentum stepsize

pk = c3 min

(
log
(

∥A†b∥1

∥A†(Axk − b)∥1

)
, n

)
, pass-through count

The formulas are motivated by the analysis but use xk instead of xtrue.

Parameters:
O(K) reduce−→ 3.

Training can be done by grid search or a global optimization method.

36 / 39

HyperLISTA is fast and robust

Good analytic rules have better generalization perf.

37 / 39

LISTA [Gregor-LeCun, 2010] 𝑊4
3 ,𝑊5

3 , 𝛼 3 , 𝜃 3
364

7

LISTA-CPSS [Chen et al., 2018] 𝑊5
3 , 𝛼 3 , 𝜃 3

364

7

ALISTA [Liu et al., 2019] 𝛼 3 , 𝜃 3
364
7

HyperLISTA [Chen et al., 2021] 𝑐4, 𝑐), 𝑐8

Eliminate 𝑊4

Eliminate 𝑊5

Eliminate all
parameters

𝒪(𝐾 𝑚 + 𝑛 𝑛)

𝒪(𝐾𝑚𝑛)

𝒪(𝐾)

𝒪(1)

Training time: 10 hour à 6 mins 96

Uncovered LISTA topics

• [Moreau and Bruna, 2017] proposed to understand LISTA by the similarity between LISTA and a
matrix-factorization method.

• [Xin et al., 2016] proposed learned iterative hard-thresholding-CP.

• [Wu et al., 2019] proposed gated mechanisms to improve LISTA.

• [Ito et al., 2019] proposed a minimum mean squared error (MMSE) estimator-based shrinkage
function in LISTA.

• [Yang et al., 2020] proposed to use nonconvex-function-induced regularizers in LISTA.

• [Heaton et al., 2020] introduced a safeguard wrapper for LISTA methods applied to structured
convex problems.

• When K is large or K =∞, LISTA cannot be trained. Instead, we can use deep equilibrium[Bai
et al., 2019, Winston and Kolter, 2020] and fixed-point network [Fung et al., 2022]. [Gilton et al.,
2021] demonstrated better image recovery.

38 / 39

https://cpal.cc/

References:

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau,
Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by
gradient descent by gradient descent. Advances in neural information processing
systems, 29, 2016.

Tianlong Chen, Weiyi Zhang, Zhou Jingyang, Shiyu Chang, Sijia Liu, Lisa Amini, and
Zhangyang Wang. Training stronger baselines for learning to optimize. Advances in
Neural Information Processing Systems, 33:7332–7343, 2020.

Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Hyperparameter tuning
is all you need for lista. Advances in Neural Information Processing Systems, 34:
11678–11689, 2021.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In
Proceedings of the 27th international conference on international conference on
machine learning, pages 399–406, 2010.

James Harrison, Luke Metz, and Jascha Sohl-Dickstein. A closer look at learned
optimization: Stability, robustness, and inductive biases. arXiv preprint
arXiv:2209.11208, 2022.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, and Wotao Yin. Alista: Analytic weights
are as good as learned weights in lista. In International Conference on Learning
Representations (ICLR), 2019.

41 / 40

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha
Sohl-Dickstein. Understanding and correcting pathologies in the training of learned
optimizers. In International Conference on Machine Learning, pages 4556–4565.
PMLR, 2019.

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha
Sohl-Dickstein. Practical tradeoffs between memory, compute, and performance in
learned optimizers. In Conference on Lifelong Learning Agents, pages 142–164.
PMLR, 2022.

Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez
Colmenarejo, Misha Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned
optimizers that scale and generalize. In International Conference on Machine
Learning, pages 3751–3760. PMLR, 2017.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger Grosse. Understanding short-horizon
bias in stochastic meta-optimization. arXiv preprint arXiv:1803.02021, 2018.

Yuanhao Xiong, Li-Cheng Lan, Xiangning Chen, Ruochen Wang, and Cho-Jui Hsieh.
Learning to schedule learning rate with graph neural networks. In International
Conference on Learning Representation (ICLR), 2022.

42 / 40

	Introduction
	LISTA: An Intuitive Example
	Towards More General Cases
	Diving Deeper on Explanation
	References

