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Learning to Optimize

Consider an optimization problem

min
x∈Rn

F (x)

Instead of manually designing an iterative algorithm

xk+1 = TF (xk)

One may learn an update rule from data

xk+1 = TF (xk; θ)

where the parameter θ is obtained by minimizing a loss function

min
θ∈Θ

EF ∈FL(xK(θ))

The set F consists of all instances of interest.
The process of minimizing the loss function is named training.
Such methodology is named Learning to Optimize (L2O).
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Examples

Example I: Learned ISTA (LISTA) [Gregor and LeCun, 2010]

• LASSO: F = {(1/2)∥Ax − b∥2 + λ∥x∥1 : A ∈ Rm×n,b ∈ Rm}
• Choose a baseline algorithm ISTA: xk+1 = proxθk

(xk −αkA⊤(Axk − b))
• Parameterization: xk+1 = proxθk

(W1,kxk + W2,kb)

Example II: Learning a rule for step size [Xiong et al., 2022]

• Deep learning:
F = {f(x) : f is the loss function of training neural networks}

• Choose a baseline algorithm SGD: xk+1 = xk − αkgk, where gk is the
stochastic gradient.

• Parameterization: αk = NN(xk,gk; θ).

Sample instances from F and Learn an algorithm.
The learned algorithm works well on unseen instances in F .
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Discussions and Motivations

A tradeoff:

• A baseline algorithm works for a broad class of problems
• One may design advanced algorithms for specific algorithms

L2O provides a uniform tool to obtain customized algorithms without domain
knowledge.

Questions:

• Can we find principles from learned algorithms?
• Can we use domain knowledge to regularize the models?
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ML vs OPT

Machine learning (ML) is induction

• (problems, answers) are given for training
• ML learns to give answers in the future

Optimization (OPT) is prescription

• (problems, evaluations) are given, not answers
• OPT finds answers with best evaluations

Learning to optimize (L2O) combines ML and OPT to obtain “better” solutions “faster”, by learning
from records of optimization.
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Classic vs Learned
Classic OPT:

• Experts hand-built algorithms based on theory and experience
For example, Simplex Method and Nesterov Accelerated Gradient Method

• Algorithms are written as iterations in a few lines
• Practitioners pick an algorithm to use

L2O:

• Experts propose L2O templates and training procedures
• Practitioners

• pick an L2O template
• prepare training data
• apply a training procedure
→ obtain a trained algorithm for future problems

• Practitioners are more involved in the design process
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Papers and Coauthors

This talk is based on the following articles:

• J. Liu, X. Chen, Z. Wang, W. Yin, and H. Cai. “Towards Constituting
Mathematical Structures for Learning to Optimize.” ICML 2023.

• X. Chen, J. Liu, Z. Wang, and W. Yin. “Hyperparameter Tuning is All
You Need for LISTA.” NeurIPS 2021.

• J. Liu, X. Chen, Z. Wang, and W. Yin. “ALISTA: Analytic weights are as
good as learned weights in LISTA.” ICLR 2019.

• X. Chen, J. Liu, Z. Wang, and W. Yin. “Theoretical Linear Convergence of
Unfolded ISTA and its Practical Weights and Thresholds.” NeurIPS 2018.
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LASSO and ISTA

LASSO: assume b = Ax∗ + noise; recover x∗ by solving

min
x

1
2∥Ax − b∥2

2 + λ∥x∥1

also known as ℓ1-regularized least-squares and compressed sensing

Iterative soft-thresholding algorithm (ISTA):

xk+1 = ηλα

(
xk − αA⊤(Axk − b)

)
• convergence requires a proper stepsize α or line search
• the gradient-descent step reduces 1

2 ∥Ax − b∥2

• the soft-thresholding step ηλα(·) reduces λ∥x∥1

9 / 40



LASSO and ISTA

LASSO: assume b = Ax∗ + noise; recover x∗ by solving

min
x

1
2∥Ax − b∥2

2 + λ∥x∥1

also known as ℓ1-regularized least-squares and compressed sensing

Iterative soft-thresholding algorithm (ISTA):

xk+1 = ηλα

(
xk − αA⊤(Axk − b)

)
• convergence requires a proper stepsize α or line search
• the gradient-descent step reduces 1

2 ∥Ax − b∥2

• the soft-thresholding step ηλα(·) reduces λ∥x∥1

9 / 40



Learned ISTA [Gregor and LeCun, 2010]

Introduce scalar θ = λα and matrices W1 = αA⊤ and W2 = I − αA⊤A.

Rewrite ISTA as
xk+1 = ηθ(W1b + W2xk).

Introduce θk,W1,k,W2,k, k = 0, 1, . . . ,K − 1, as free parameters and define

xk+1 = ηθk (W1,kb + W2,kxk), k = 0, 1, · · · ,K − 1.

Once {θk,W1,k,W2,k}K−1
k=0 are determined, we obtain a new algorithm.

Find parameters such that the algorithm converges very fast for a set of
LASSO instances with the same A.
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Fix random matrix A, generate a set of sparse x∗,i, with varying supports, and
bi = Ax∗,i + noisei. Form the training set F = {(x∗,i,bi)}.

Fix a small K > 0, and train the parameters by applying SGD to

min
{θk,W1,k,W2,k}K−1

k=0

E(x∗,b)∈F ∥xK(b) − x∗∥2
2 .

After the NN is trained with K = 16:
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The trained NN is called Learned ISTA (LISTA).
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Weight coupling
Given the superb performance,
can we find some principles from the learned algorithm?

Suppose the learned algorithm is an “ideal” algorithm: exactly recover x∗ given
infinite many steps.

Theorem
Assume no noise. If LISTA has xk → x∗ as k → ∞ uniformly for all sparse x∗,
then the parameters {θk,W1,k,W2,k}∞

k=0 must satisfy the relation

W2,k + W1,kA → I, as k → ∞.

Indeed, training confirms the claims:
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Therefore, we enforce
W2,k = I − W1,kA,

for all k, yielding the iteration:

xk+1 = ηθk (xk + W1,k(b − Axk)).

We call it weight coupling (CP).

Parameters
O(n2K +mnK) reduce−→ O(mnK),

significant reduction if m < n (which is often the case).

After this reduction, training also appears to be more stable.
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Empirical Settings

Normalized MSE (NMSE) in dB:

NMSE(x̂,x∗) = 20 log10 (∥x̂ − x∗∥2/∥x∗∥2)

Tests:

• m = 250, n = 500, sparsity s ≈ 50.
• Aij ∼ N (0, 1/

√
m), iid. A is column-normalized.

• Magnitudes were sampled from standard Gaussian.
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Weight coupling (CP)
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CP stabilizes intermediate results.
Same final recovery quality.
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A general L2O model

Consider minx∈Rn F (x).
A baseline manually designed algorithm: gradient descent with momentum:

vk+1 =βkvk + (1 − βk)∇F (xk),

xk+1 =xk − αkvk+1, k = 0, 1, 2, . . .

Andrychowicz et al. [2016] proposed to learn a parameterized algorithm:

dk,hk =LSTM
(
xk,∇F (xk),hk−1;ϕ

)
xk+1 =xk − dk

by minimizing a loss function

min
ϕ

EF ∈F

K∑
k=1

F (xk)

Term “LSTM” means a long short-term memory cell.
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Numerical results
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Some discussions

Observation: The learned update rule may diverge on unseen instances.
This is still an active topic in the literature. [Wichrowska et al., 2017, Wu
et al., 2018, Metz et al., 2019, Chen et al., 2020, Harrison et al., 2022, Metz
et al., 2022]

Question: Can we find those conditions that dk should satisfy if we assume
xk → x∗?

Preparations:
• Assumptions on the objective function F :
(Smooth case) F (x) = f(x), where f is convex and differentiable with
Lipschitz continuous gradient
(Nonsmooth case) F (x) = r(x), where r is proper, closed and convex.
(Composite case) F (x) = f(x) + r(x)

• Assumptions on the update direction {dk}
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Basic settings for smooth case

The update direction dk is generated by LSTM
(
xk,∇f(xk),hk−1;ϕ

)

Write dk = m
(
xk,∇f(xk),hk−1;ϕ

)
where m is a parameterized operator

With mk(·, ·) := m(·, ·,hk−1), we write dk = mk

(
xk,∇f(xk);ϕ

)
Let’s consider a more general update rule

xk+1 = xk − dk(xk,∇f(xk))

where dk is an operator picked from

DC(R2n) =
{

d : R2n → Rn
∣∣ d is differentiable, ∥Jd(z)∥F ≤ C, ∀z ∈ Z

}
.

• Training needs derivatives of dk.
• Many existing parameterization approaches yield dk ∈ DC(R2n).
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Core Assumptions

What conditions should the update rule follow?

• (Global Convergence) For any sequences {xk}∞
k=0 generated by the given

rule, there exists x∗ ∈ arg minx∈Rn f(x) such that limk→∞ xk = x∗.

Fixed point assumption: xk+1 = x∗ as long as xk = x∗:

x∗ = x∗ − dk(x∗,∇f(x∗))

Convex analysis theory tells us ∇f(x∗) = 0, and we obtain dk(x∗,0) = 0.
• (Asympototic Fixed Point Condition) Formally, we relax it and assume

lim
k→∞

dk(x∗,0) = 0

for any x∗ ∈ arg minx∈Rn f(x).

The two assumptions are coined as (GC) and (FP), respectively.
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A Preliminary Result

Theorem

For any f and any operator sequence {dk}∞
k=0 that satisfies (GC) and (FP),

there exist Pk ∈ Rn×n and bk ∈ Rn satisfying

dk(xk,∇f(xk)) = Pk∇f(xk) + bk,

with Pk is bounded and bk → 0 as k → ∞.

• A “good” update rule is not totally free.
• It covers many optimization algorithms, such as accelerated GD,
quasi-Newton methods, etc.
• Instead of learning dk, one may learn a preconditioner Pk and a bias bk

xk+1 = xk − Pk

(
xk;ϕ

)
∇f(xk) − bk

(
xk;ψ

)
,
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(
xk;ϕ

)
∇f(xk) − bk

(
xk;ψ

)
,
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Nonsmooth case

On nonsmooth problems minx r(x), a direct extension to gradient descent is
sub-gradient descent: xk+1 = xk − αkgk, gk ∈ ∂r(xk).

Such explicit rule suffers from convergence issues.

An implicit rule like proximal point algorithm (PPA) converges much better:

xk+1 = xk − αkgk+1, gk+1 ∈ ∂r(xk+1).

Back to L2O, we choose an implicit rule:

xk+1 = xk − dk(xk+1,gk+1), gk+1 ∈ ∂r(xk+1).
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Implicit rule:

xk+1 = xk − dk(xk+1,gk+1), gk+1 ∈ ∂r(xk+1). (1)

Theorem

For each r and any {dk}∞
k=0 that satisfies (GC) and (FP), there exist

Pk ∈ Rn×n and bk ∈ Rn such that (1) yields
xk+1 = xk − Pkgk+1 − bk, gk+1 ∈ ∂r(xk+1),

with Pk is bounded and bk → 0 as k → ∞. If we further assume Pk ≻ 0,
xk+1 can be uniquely determined through xk+1 = proxr,Pk

(xk − bk).

The proximal operator proxr,Pk
is defined with proxr,P(x̄) := arg minx r(x)+ 1

2 ∥x−x̄∥2
P−1 .

• Global Convergence and Asymptotic Fixed Point Condition imply (1) yields a
structure.
• A generalized proximal point algorithm. Fix Pk = αI,bk = 0, it reduces to
PPA.
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Composite Case

Consider the composite case minx f(x) + r(x). We analyze a mixed rule

xk+1 = xk − dk(xk,∇f(xk),xk+1,gk+1), gk+1 ∈ ∂r(xk+1). (2)

Theorem

For any f, r, {dk}∞
k=0 that satisfies (GC) and (FP), there exist Pk ∈ Rn×n and

bk ∈ Rn such that (2) yields

xk+1 = xk − Pk(∇f(xk) − gk+1) − bk, gk+1 ∈ ∂r(xk+1),

with Pk is bounded and bk → 0 as k → ∞. If we further assume Pk ≻ 0,
xk+1 can be uniquely determined given xk through

xk+1 = proxr,Pk
(xk − Pk∇f(xk) − bk). (3)

With Pk = αI,bk = 0, (3) reduces to Proximal Gradient Descent (PGD).
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Longer Horizen

Introduce an extra variable yk that encodes historical information

yk = m(xk,xk−1, · · · ,xk−T ).

Insert yk to the previous update rule

xk+1 = xk − dk(xk,∇f(xk),xk+1,gk+1,yk,∇f(yk)), gk+1 ∈ ∂r(xk+1)

Theorem

Suppose T = 1. For any f, r,m, {dk}∞
k=0 that satisfies (GC) and (FP), there

exist P1,k,P2,k,Ak ∈ Rn×n and b1,k,b2,k ∈ Rn satisfying
xk+1 = xk − (P1,k − P2,k)∇f(xk) − P2,k∇f(yk) − b1,k

− P1,kgk+1 − Bk(yk − xk), gk+1 ∈ ∂r(xk+1),

yk+1 = (I − Ak)xk+1 + Akxk + b2,k

for all k = 0, 1, 2, · · · , with {P1,k,P2,k,Ak} bounded and b1,k → 0,b2,k → 0
as k → ∞.
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L2O Model and Parameterization

If we further assume P1,k is uniformly symmetric positive definite, then we can
substitute P2,kP−1

1,k with Bk and obtain
x̂k = xk − P1,k∇f(xk),

ŷk = yk − P1,k∇f(yk),

xk+1 = proxr,P1,k

(
(I − Bk)x̂k + Bkŷk − b1,k

)
,

yk+1 = xk+1 + Ak(xk+1 − xk) + b2,k.

We suggest using diagonal matrices for P1,k,Bk,Ak in practice:
P1,k = diag(pk), Bk = diag(bk), Ak = diag(ak),

where pk,bk,ak ∈ Rn are vectors.
We model pk, ak, bk, b1,k, b2,k as the output of LSTM:

ok,hk = LSTM
(
xk,∇f(xk),hk−1;ϕLSTM

)
,

pk,ak,bk,b1,k,b2,k = MLP(ok;ϕMLP).
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ŷk = yk − P1,k∇f(yk),

xk+1 = proxr,P1,k

(
(I − Bk)x̂k + Bkŷk − b1,k
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Ablation Study

We compare

• PBA12: pk,ak,bk,b1,k,b2,k are all learnable.
• PBA1: pk,ak,bk,b1,k are learnable; b2,k = 0.
• PBA2: pk,ak,bk,b2,k are learnable; b1,k = 0.
• PBA: pk,ak,bk are learnable; b2,k = b1,k = 0.
• PA: pk,ak are learnable; b2,k = b1,k = 0; bk = 1.
• P: only pk is learnable; ak = b2,k = b1,k = 0; bk = 1.
• A: only ak is learnable; b2,k = b1,k = 0; bk = 1; pk = (1/L)1.

on more challenging LASSO settings: A is not fixed; each LASSO instance
takes an independently generated A.
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Ablation study: Results
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Final model

We adopt (PA) and fix b1,k = b2,k = 0 and bk = 1.

ok,hk = LSTM
(
xk,∇f(xk),hk−1;ϕLSTM

)
,

pk,ak = MLP(ok;ϕMLP),

xk+1 = proxr,pk

(
yk − pk ⊙ ∇f(yk)

)
,

yk+1 = xk+1 + ak ⊙ (xk+1 − xk).

Instead of learning the update rule, we suggest learning a preconditioner pk

and an accelerator ak.
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Comparison: In-Distribution Test
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Figure: LASSO: Train and test on synthetic data.
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Comparison: Out-of-Distribution Test
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Figure: LASSO: Train on synthetic data and test on real data (BSDS500).
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Further analysis

Recall LISTA-CP model:

xk+1 = ηθk (xk − W1,k(Axk − b)).

Assume b = Ax∗ + noise, where supp(x∗) is uniformly distributed.

Liu et al. [2019] shows that the recovery error and convergence rate only
depend on

sup
k

max
1≤i ̸=j≤n

|w⊤
i,kaj |

• wi,k is the i-th column of W1,k; aj is the j-th column of A.
• W1,k are scaled such that w⊤

i,kai = 1 for all i = 1, 2, · · · , n.
• One might minimize the non-diagonal terms of W⊤

1,kA independently for
each k.
• An extension to mutual coherence in compressive sensing.
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Parameter reduction: tie W1 across iterations
Inspired by the analysis, let us try W1,k tied for all k. Write it as W.
• Tied LISTA (TiLISTA) iteration:

xk+1 = ηθk (xk − γkW⊤(Axk − b)).

Parameters:
O(mnK) reduce−→ O(mn+K),

We learn only step sizes {γk}k and thresholds {θk}k and a single matrix W.
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TiLISTA works even slightly better than LISTA-CPSS
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Observation

We scale W such that w⊤
i ai = 1 for i = 1, . . . , n and then measure

max1≤i̸=j≤n |w⊤
i aj | in TiLISTA. Compare it to ALISTA (next slide).
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Good W needs to have small mutual coherence to A.
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Analytic LISTA (ALISTA)

We use this principle to determine W without training [Liu et al., 2019] .

Two steps:

1. Compute approximately optimal W̃:

W̃ ∈ argmin
W∈Rm×n

∥∥W⊤A
∥∥2

F
, s.t. w⊤

i ai = 1, ∀i = 1, 2, · · · , n,

which is a convex quadratic program (QP).
2. With W̃ fixed, learn {γk, θk}k from data

Parameters:
O(mn+K) reduce−→ O(K).

Training takes only minutes.
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Numerical evaluation

Noiseless case
(SNR=∞)
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Noisy case
(SNR=30dB)
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Robust ALISTA
Consider ỹ = Ãx + ε with Ã = A + εA. Given Ã and ỹ, recover x. Must handle varying Ã.

Unroll an algorithm into an NN to generate W̃ for Ã.

Method:
1. train an NN (called encoder) with many pairs of (Ã, W̃ )
2. train an ALISTA (called decoder) with many (Ã, ỹ, W̃ , x)
3. jointly train them with many (Ã, ỹ, W̃ , x)
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Numerical results
Fix an A. Training:

• Non-robust LISTA methods used their W matrices obtained with A.
• Robust ALISTA trained with perturbed A (Gaussian σ = 0.03).

Testing: All methods tested with perturbed A’s (Gaussian σ1, σ2, · · · ≤ 0.03).
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Robust ALISTA is significantly more robust.
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HyperLISTA [Chen et al., 2021]

Introduce

• a hybrid-thresholding operator to bypass pk largest entries and soft-threshold the rest
• analytic formulas for the parameters
• three hyper-parameters subject to grid search

Significance:

• allow the parameters to be “instance optimal”
• proves ∃ parameters to obtain superlinear-like error reduction
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HyperLISTA learns c1, c2, c3 > 0 and use them to set

θk = c1µ
∥∥A†(Axk − b)

∥∥
1
, soft threshold

βk = c2µ ∥xk∥0, momentum stepsize

pk = c3 min

(
log
(

∥A†b∥1

∥A†(Axk − b)∥1

)
, n

)
, pass-through count

The formulas are motivated by the analysis but use xk instead of xtrue.

Parameters:
O(K) reduce−→ 3.

Training can be done by grid search or a global optimization method.
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HyperLISTA is fast and robust

Good analytic rules have better generalization perf.
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LISTA [Gregor-LeCun, 2010] 𝑊4
3 ,𝑊5

3 , 𝛼 3 , 𝜃 3
364

7

LISTA-CPSS [Chen et al., 2018] 𝑊5
3 , 𝛼 3 , 𝜃 3

364

7

ALISTA [Liu et al., 2019] 𝛼 3 , 𝜃 3
364
7

HyperLISTA [Chen et al., 2021] 𝑐4, 𝑐), 𝑐8

Eliminate 𝑊4

Eliminate 𝑊5

Eliminate all
parameters

𝒪(𝐾 𝑚 + 𝑛 𝑛)

𝒪(𝐾𝑚𝑛)

𝒪(𝐾)

𝒪(1)

Training time: 10 hour à 6 mins 96



Uncovered LISTA topics

• [Moreau and Bruna, 2017] proposed to understand LISTA by the similarity between LISTA and a
matrix-factorization method.

• [Xin et al., 2016] proposed learned iterative hard-thresholding-CP.

• [Wu et al., 2019] proposed gated mechanisms to improve LISTA.

• [Ito et al., 2019] proposed a minimum mean squared error (MMSE) estimator-based shrinkage
function in LISTA.

• [Yang et al., 2020] proposed to use nonconvex-function-induced regularizers in LISTA.

• [Heaton et al., 2020] introduced a safeguard wrapper for LISTA methods applied to structured
convex problems.

• When K is large or K =∞, LISTA cannot be trained. Instead, we can use deep equilibrium[Bai
et al., 2019, Winston and Kolter, 2020] and fixed-point network [Fung et al., 2022]. [Gilton et al.,
2021] demonstrated better image recovery.
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