ICASSP 2023 Short Course

Learning Nonlinear and Deep Representations from High-Dimensional Data From Theory to Practice

Lecture 1: Introduction to Low-Dimensional Models

Sam Buchanan, Yi Ma, Qing Qu, Atlas Wang John Wright, Yuqian Zhang, Zhihui Zhu

June 6, 2023

The Signal Processing Pipeline

The pursuit of low-dimensional structure is a universal task!

K ロ K K @ K K X B K X B X → B

 299

Historical Context: Quest for Low-Dimensionality

Fourier

Wavelets

X-lets: Curvelets, Contourlets, Bandelets, ...

Learned Dictionaries

Learned Reconstruction Procedures

(ロ) (個) (星) (星)

つくへ

A continuing quest for sparse signal representations leveraging mathematics $+$ massive data and computation!

Historical Context: Sparsity in Neuroscience

Dogma for natural vision [Barlow 1972]: "... to represent the input as completely as possible by activity in as few neurons as possible."

$$
\mathbf{y} = \sum_{i=1}^n x_i \mathbf{a}_i + \boldsymbol{\epsilon} \quad \in \mathbb{R}^m, \quad (1)
$$

[Nature, Olshausen and Field 1996.]

イロメ メタメ メミメ メミメ

つへへ

Historical Context: Sparse and Low-d in Statistics

Principal Component Analysis

Linear correlations in data (low-rank model!)

[Pearson 1901], [Hotelling 1933], [Eckart and Young 1936]

Best Subset Selection

Select a few relevant predictors (sparse model!)

[Hocking, Leslie, and Beale 1967], Stagewise pursuit [Efroymson 1966], Lasso [Tibshirani 1996], Basis pursuit [Chen, Donoho, and Saunders 1998]

Historical Context: Estimation, Errors, Missing Data

A long and rich history of robust estimation with error correction and missing data imputation:

R. J. Boscovich. De calculo probailitatum que respondent diversis valoribus summe errorum post plures observationes \ldots before 1756

A. Legendre, Nouvelles methodes pour la determination des orbites des cometes, 1806

A. Beurling. Sur les integrales de Fourier absolument convergentes et leur application a une transformation functionelle, 1938

B. Logan. Properties of High-Pass Signals, 1965

over-determined + dense, Gaussian

underdetermined + sparse, Laplacian

 $2Q$

キロメ メ御メ メミメ メミメ

The Modern Era: Massive Data and Computation

K ロ K K 御 K K 重 K K 重 K $2Q$

Motivating Issues I: **Correctness?**

Motivating Issues II: Computational Efficiency?

Computational Tractability: easy vs./ hard problems:

(ロ) (個) (星) (星)

 $2Q$

Motivating Issues III: Resource Efficiency?

Data Efficiency: How many samples? How many labels? Architecture Efficiency: How deep? How wide? What operations?

Low-d. structure of data sets fundamental resource requirements for sensing and learning.

Motivating Issues $IV -$ Robustness?

Robustness: to errors, outliers, missing data:

Robustness and deep networks?

"panda" 57.7% confidence

From [Goodfellow, Shlens and Szegedy, 2015]

 $+.007 \times$

"nematode" 8.2% confidence

"gibbon" 99.3 % confidence

Low-d structure of signal and error can lead to principled approaches to robustness.

Motivating Issues V: Invariance?

Transformations of the signal domain:

can cause still lead to disturbing failures:

From [Azulay and Weiss, 2019]

Horizontal Shift

Low-d. structure in texture / appearance and transformation!

This Course: The Plan

- Lecture 1: Introduction to Low-D Models
- Lecture 2 (today): Low-D in Neural Networks: Practice and Theory
- Lecture 3 (6/7): *Designing* Deep Networks for Low-D Structure
- Lecture 4 (6/7): Nonconvex Optimization for Low-D Structure
- Lecture 5-7 (6/8-9): Learning Deep Networks for Low-D Structure

This Tutorial: Resources

High-Dimensional Data Analysis with Low-Dimensional Models Principles, Computation, and Applications John Wright and Yi Ma

Cambridge University Press, 2022.

K ロ X K @ X X B X X B X → B

 299

Preproduction Copy from Website: <https://book-wright-ma.github.io> Slides, Code, etc: <https://book-wright-ma.github.io/Lecture-Slides/>

Tutorial Website: tutorial slides, code, etc.: <https://highdimdata-lowdimmodels-tutorial.github.io>

Sparse Signal Models

 $\mathsf{Sparse} \ \mathsf{Signals}$: Call $x_o \in \mathbb{R}^n \ \textit{sparse}$ if it has only a few nonzero entries:

 $\mathsf{Sparse}\ \mathsf{Recovery}\colon$ Given *linear measurements* $\boldsymbol{y} \in \mathbb{R}^m$ *o*f a sparse signal

recover x_0 .

Sparsity I: Neural Spikes

Sparse and low-dimensional models arise naturally from physical structure of data!

メロメ メタメ メミメ メミメ

 $2Q$

重

Sparsity I: Neural Spikes and Beyond

Common Convolutional Model: $y = a * x + z$, with x sparse.

Sparsity II: Faces and Error Correction

Two types of structure: sparsity of identity and sparsity of errors.

 $2Q$

Sparsity II: Faces and Error Correction

Two types of structure: sparsity of identity and sparsity of errors.

Concatenate gallery images of n subjects into a large "dictionary":

$$
\boldsymbol{B} = [\boldsymbol{B}_1 \mid \boldsymbol{B}_2 \mid \cdots \mid \boldsymbol{B}_n] \in \mathbb{R}^{m \times n}
$$

all training images

K ロ ト K 御 ト K 澄 ト K

 $2Q$

Sparsity II: Faces and Error Correction

Find sparse solutions (x, e) to the linear system:

$$
y \ = \ Bx + e \ = \ [B,I]\,[\tfrac{x}{e}]\,.
$$

Correcting Gross Errors is also a sparse recovery problem!

K ロ K K 御 K K 重 K K 重 K $2Q$

Sparsity III: Magnetic Resonance Imaging

Figure: Left: Key components. Right: The three-axis gradient coils.

メロメ メタメ メミメ メミメ

 299

重

Sparsity III: Magnetic Resonance Imaging

Simplified mathematical model for MRI:

$$
y = \mathcal{F}[I](u) = \int_{v} I(v) \exp(-i 2\pi u^{*} v) dv, \quad u, v \in \mathbb{R}^{2}
$$

$$
y = \begin{bmatrix} y_{1} \\ \vdots \\ y_{m} \end{bmatrix} = \begin{bmatrix} \mathcal{F}[I](u_{1}) \\ \vdots \\ \mathcal{F}[I](u_{m}) \end{bmatrix} \doteq \mathcal{F}_{U}[I], \quad m \ll N^{2}.
$$

Figure: Recovering MRI image from Fourier measurements.

Sparsity III: Structure of MR Images

Express I as a superposition of basis functions $\Psi = {\psi_1, \ldots, \psi_{N^2}}$:

Many natural signals become sparse or compressible in an appropriately designed transform domain!

Sparsity III: Image Reconstruction by Sparse Recovery

$$
\mathbf{y} = \mathcal{F}_{\mathsf{U}}[I],
$$
\n
$$
= \mathcal{F}_{\mathsf{U}}\left[\psi_{1}x_{1} + \cdots + \psi_{N^{2}}x_{N^{2}}\right],
$$
\n
$$
= \mathcal{F}_{\mathsf{U}}\left[\psi_{1}x_{1} + \cdots + \mathcal{F}_{\mathsf{U}}\left[\psi_{N^{2}}\right]x_{N^{2}},\right]
$$
\n
$$
= \left[\mathcal{F}_{\mathsf{U}}[\psi_{1}]\right] \cdots \left[\mathcal{F}_{\mathsf{U}}[\psi_{N^{2}}]\right]x,
$$
\n
$$
= \mathbf{A}x.
$$
\n(2)

 x is sparse or approximately sparse!

Compressed sensing: the number of measurements m for accurate reconstruction should be dictated by signal complexity

K ロ K K d K K K X X R X X R X R R

 299

Sparsity IV: Image Patches

Denoising given $I_{\text{noisy}} = I_{\text{clean}} + z$... break into patches y_1, \ldots, y_p .

$$
y_i ~=~ y_{i\text{-clean}} + z_i = \underbrace{A}_{\text{patch dictionary}} \times \underbrace{x_i}_{\text{sparse coefficient vector}} + z_i.
$$

Figure: Left: noisy input; middle: denoised; right: learned patch dictionary.

Natural signals are challenging to model analytically \implies can learn the sparse model from data!

Figure: [Mairal, Elad, Sapiro '08]

Measuring Sparsity: ℓ^0 Norm

Def: the ℓ^0 "norm" $||x||_0$ is the **number of nonzero entries** in the vector $x: \|x\|_0 = \#\{i \mid x(i) \neq 0\}.$

:

Connection to
$$
\ell^p
$$
 norms

\n
$$
\|x\|_p = \left(\sum_i |x_i|^p\right)^{1/p}
$$
\n
$$
\|x\|_0 = \lim_{p \searrow} \|x\|_p^p.
$$

The ℓ^p balls.

メロト メ御 トメ 君 トメ 君 トッ 君 し $2Q$

Sparse Recovery: ℓ^0 minimization

Computational Principle: seek the **sparsest** signal consistent with our observations:

$$
\hat{\boldsymbol{x}} = \arg \min \| \boldsymbol{x} \|_0 \quad \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{y}.
$$

Brute force exhaustive search: try all possible sets of nonzero entries

$$
\boldsymbol{A_i x_i = y?} \quad \forall i \subseteq \{1,\ldots,n\}, \ |\mathbf{i}| \leq k.
$$

★ ロン → 御 > → (할 > → 할 > → 할

 299

Sparse Recovery: ℓ^0 minimization

Computational Principle: seek the **sparsest** signal consistent with our observations:

$$
\hat{\boldsymbol{x}} = \arg \min \| \boldsymbol{x} \|_0 \quad \text{s.t.} \quad \boldsymbol{A} \boldsymbol{x} = \boldsymbol{y}.
$$

Brute force exhaustive search: try all possible sets of nonzero entries

$$
\boldsymbol{A}|\boldsymbol{x}|=\boldsymbol{y}?\quad \forall l\subseteq\{1,\ldots,n\},\; |l|\leq k.
$$

Theory: ℓ^0 recovers any sufficiently sparse signal! For generic A , success when $\|\boldsymbol{x}_o\|_0 \leq \frac{m}{2}$ $\frac{n}{2}$.

メロト メタト メミト メミト $2Q$

ℓ^0 Minimization is NP-hard

Theorem (Hardness of ℓ^0 Minimization)

The ℓ^0 -minimization problem $\min \|x\|_0$ s.t. $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{y}$ is (strongly) NP-hard.

Proof: Reducible from Exact 3-Set Cover (E3C) problem.

K ロ K K d K K K X X R X X R X R R

 $2Q$

ℓ^0 Minimization is NP-hard

Theorem (Hardness of ℓ^0 Minimization)

The ℓ^0 -minimization problem $\min \|x\|_0$ s.t. $\boldsymbol{A} \boldsymbol{x} = \boldsymbol{y}$ is (strongly) NP-hard.

Proof: Reducible from *Exact 3-Set Cover* (E3C) problem.

In high dimensions, need to pay attention to both **statistical and** computational efficiency!

Convex Relaxation: ℓ^1 Minimization

Intuitive reasons why ℓ^0 minimization:

 $\min ||x||_0$ subject to $Ax = y$. (3)

is very challenging:

 ℓ^0 is nonconvex, discontinuous, not amenable to local search methods such as gradient descent.

Convex Relaxation: ℓ^1 Minimization

For minimizing a generic function: $\min f(x), x \in \mathsf{C}$ (a convex set), **local methods:** $x_{k+1} = x_k - t \nabla f(x_k)$ succeed only if f has "nice" geometry:

Need to formulate for computational efficiency!

- Lectures 1: **convex relaxations** for sparse, low-rank models
- Lectures $2+$: benign nonconvex formulations for nonlinear models

Convex Relaxation: ℓ^1 Minimization

Figure: Convex surrogates for the ℓ^0 norm. $||x||_1$ is the convex envelope of $||x||_0$ on B_{∞} .

Minimizing the ℓ^1 Norm: Simulations

Solve: $\min \|x\|_1$ s.t. $Ax = y$. (4)

A is of size 200×400 . Fraction of success across 50 trials.

Experiment: ℓ^1 minimization recovers any sufficiently sparse signal?

Geometric Intuition: Coefficient Space

Given $\boldsymbol{y} = \boldsymbol{A} \boldsymbol{x}_o \in \mathbb{R}^m$ with $\boldsymbol{x}_o \in \mathbb{R}^n$ sparse:

$$
\min \|x\|_1 \quad \text{subject to} \quad Ax = y. \tag{5}
$$

(ロ) (個) (星) (星)

つくい

一目

The space of all feasible solutions is an affine subspace:

$$
\mathsf{S} = \{ \boldsymbol{x} \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{y} \} = \{ \boldsymbol{x}_o \} + \text{null}(\boldsymbol{A}) \quad \subset \mathbb{R}^n. \tag{6}
$$

Geometric Intuition: Coefficient Space

Gradually expand a ℓ^1 ball of radius t from the origin $\mathbf{0}$:

$$
t \cdot \mathsf{B}_1 = \{\boldsymbol{x} \mid ||\boldsymbol{x}||_1 \leq t\} \quad \subset \mathbb{R}^n, \tag{7}
$$

till its boundary first touches the feasible set S:

Geometric Intuition: ℓ^1 vs. ℓ^2 ?

 ℓ^1 picks out sparse signals, because the ℓ^1 ball is pointy!

Theory: Isometry Principles

Say that A satisfies the restricted **isometry property** of order k with coefficient δ if for all k-sparse x,

$$
(1 - \delta) ||x||_2^2 \le ||Ax||_2^2 \le (1 + \delta) ||x||_2^2.
$$

(ロ) (個) (違) (違) (違)

重

 $2Q$

Theorem $(\mathsf{RIP} \implies \ell^1 \text{ succeeds})$

Suppose that $\delta_{2k}({\bm A}) < \sqrt{2}-1.$ Then ℓ^1 minimization recovers any k -sparse signal $x!$

Theory: Random Sensing

Theorem (RIP of Gaussian Matrices)

If $A \in \mathbb{R}^{m \times n}$ with entries independent $\mathcal{N}\left(0, \frac{1}{m}\right)$ $\frac{1}{m}$) random variables, with high probability, $\delta_k(A) < \delta$, provided $m \geq Ck \log(n/k)/\delta^2$.

 \implies ℓ^1 -minimization recovers k-sparse vectors from about $k \log(n/k)$ measurements (nearly minimal)!

Extensions: other distributions, structured random matrices.

From Sparse Recovery to Low-Rank Recovery

$$
\boldsymbol{y}_{\text{observation}} = \mathcal{A} \begin{bmatrix} \boldsymbol{X}_o \\ \boldsymbol{u}_{\text{unknown}} \end{bmatrix}
$$

where $\mathcal{A}:\mathbb{R}^{n_1\times n_2}\rightarrow\mathbb{R}^m$ is a linear map.

Data space \mathbb{R}^{n_1}

★ ロ ▶ → 御 ▶ → 결 ▶ → 결 ▶ │ 결

 299

Low-Rank I: Rank and Geometry

Multiple images of a Lambertian object with varying light:

 $Y = \mathcal{P}_{\Omega}[NL]$, $X = NL$ has rank 3.

Low-rank model from physical constraints (3 degrees of freedom in point illumination)

See also: multiview geometry, system identification, sensor positioning...

K ロ K K 御 K K W B K W B K W B B

 299

Low-Rank II: Rank and Collaborative Filtering

Low-rank model: user preferences are linearly correlated; a few $\textsf{factors}\,$ predict <code>preferences</code> $(\boldsymbol{Y_{ij}}=\boldsymbol{u}_i^T\boldsymbol{v}_j,\,$ with $\boldsymbol{u}_i,\boldsymbol{v}_j\in\mathbb{R}^r).$

See also: latent semantic analysis, topic modeling...

Rank and Singular Value Decomposition

Theorem (Compact SVD)

Let $X \in \mathbb{R}^{n_1 \times n_2}$ be a matrix, and $r = \text{rank}(X)$. Then there exist $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_r)$ with numbers $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r > 0$ and matrices $\boldsymbol{U} \in \mathbb{R}^{n_1 \times r}$, $\boldsymbol{V} \in \mathbb{R}^{n_2 \times r}$, such that $\boldsymbol{U}^* \boldsymbol{U} = \boldsymbol{I}$, $\boldsymbol{V}^* \boldsymbol{V} = \boldsymbol{I}$ and

$$
\boldsymbol{X}~=~\boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{*}~=~\sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{*}.
$$

Low-rank is sparsity of the singular values: $\text{rank}(X) = ||\sigma(X)||_0!$

Many of the same tools and ideas apply!

Computing SVD: Nice Nonconvex Problem (Lecture 3)

Affine Rank Minimization

Problem: recover a low-rank matrix X_o from linear measurements: min rank (X) subject to $A[X] = y$ where $\bm{y} \in \mathbb{R}^m$ is an observation and $\mathcal{A}: \mathbb{R}^{n_1 \times n_2} \rightarrow \mathbb{R}^m$ is linear.

General linear map: $\mathcal{A}[\bm{X}] = (\langle \bm{A}_1, \bm{X} \rangle, \dots, \langle \bm{A}_m, \bm{X} \rangle), \ \bm{A}_i \in \mathbb{R}^{n_1 \times n_2}.$

NP-Hard in general, by reduction from ℓ^0 minimization, using that

 $\text{rank}(\boldsymbol{X}) = \left\| \boldsymbol{\sigma}(\boldsymbol{X}) \right\|_0.$

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

Let's seek a tractable surrogate...

Convex Relaxation: Nuclear Norm Minimization

Replace the rank, which is the ℓ^0 norm $\boldsymbol{\sigma}(\boldsymbol{X})$ with the ℓ^1 norm of $\boldsymbol{\sigma}(\boldsymbol{X})$:

$$
\textbf{Nuclear norm:} \quad \|X\|_* \doteq \|\sigma(X)\|_1 = \sum_i \sigma_i(X).
$$

Also known as the trace norm, Schatten 1-norm, and $K_{\mathcal{Y}}$ -Fan k-norm.

Nuclear norm minimization problem:

 $\min \|\boldsymbol{X}\|_*$ subject to $\mathcal{A}[\boldsymbol{X}] = \boldsymbol{y}.$

Geometry of nuclear norm minimization:

Nuclear norm ball $B_* = \{X \mid ||X||_* \leq 1\}$

K ロ K K d K K K X X R X X R X R R

 $2Q$

Low-Rank Recovery with Generic Measurements

Rank Restricted Isometry Property: for all rank- $r X$,

 $(1 - \delta)$ || \mathbf{X} || $_F \leq$ || $\mathcal{A}[\mathbf{X}]$ || $\leq (1 + \delta)$ || \mathbf{X} || $_F$

- Rank RIP \implies accurate recovery: if $\delta_{4r}(\mathcal{A}) \leq \sqrt{2}-1$, nuclear norm minimziation recovers any rank- $r X_{\alpha}$.
- Random linear maps have rank-RIP if

$$
\mathcal{A}[\boldsymbol{X}] = (\langle \boldsymbol{A}_1, \boldsymbol{X} \rangle, \ldots, \langle \boldsymbol{A}_m, \boldsymbol{X} \rangle)
$$

with A_1, \ldots, A_m independent Gaussian matrices, A has rank-RIP with high probability when $m \geq C(n_1 + n_2)r/\delta^2$.

Nuclear norm minimization recovers low-rank matrices from near minimal number $m \sim r(n_1 + n_2 - r)$ of generic measurements.

Generic vs. Structured Measurements

Rank-RIP: no low-rank X in $null(A)$. Matrix completion: \exists rank-1 X in null(A). E.g., $X = E_{ij}$, $(i, j) \notin \Omega$.

⇒ Matrix completion does not have restricted isometry property!

Analogous instances: superresolution of point sources, sparse spike deconvolution, analysis of dictionary learning methods.

Theory for Matrix Completion

Theorem

With high probability, nuclear norm minimization recovers an $n \times n$, v-incoherent, rank-r matrix from a random subset of entries, of size $\mathfrak{S}, \mathfrak{S}$ $\ddot{}$ et of entries, of size m

 $m \geq C n r \nu \log^2 n$.

S ⌫ 0

m

Parallelism between Rank and Sparsity

Sharp Phase Transitions with Gaussian Measurements

High dimensions (large n): sharp line between success and failure!

Beautiful math: convex polytopes, conic geometry, high-D probability.

Noise and Inexact Structure

Observation: $y = Ax_0 + z$, with x_0 structured, and z noise.

Goal: produce \hat{x} as close to x_0 as possible! Relax:

• Lasso for stable sparse recovery

$$
\min_{\boldsymbol{x}} \tfrac{1}{2}\|\boldsymbol{A}\boldsymbol{x}-\boldsymbol{y}\|_2^2 + \mu\|\boldsymbol{x}\|_1
$$

• Matrix Lasso for stable low-rank recovery

$$
\min_{\mathbf{X}} \frac{1}{2} ||\mathcal{A}[\mathbf{X}] - \mathbf{y}||_2^2 + \mu ||\mathbf{X}||_*.
$$

Wealth of statistical results: if A "nice" (say, RIP or RSC) ...

(i) Deterministic noise: $\|\widehat{\boldsymbol{x}} - \boldsymbol{x}_o\| \leq C \|\boldsymbol{z}\|_2$ (ii) Stochastic noise: $\|\widehat{x} - x_o\| \leq C\sigma \sqrt{k \log n/m}$. (iii) Inexact structure: $\|\widehat{x} - x_o\| \leq C \|x_o - [x_o]_k\|.$

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙

Parallelism between Rank and Sparsity

Combining Rank and Sparsity: Robust PCA?

Given $Y = L_o + S_o$, with L_o low-rank, S_o sparse, recover (L_o, S_o) .

 290

キロメ メ母メ メミメ メミメ

A robust counterpart to classical principal component analysis:

Classical PCA: Low-rank $+$ small noise Matrix Completion: Low-rank from a subset of entries **Low-rank and Sparse:** Low-rank $+$ gross errors

Low-rank $+$ Sparse I: Video

A sequence of video frames can be modeled as a static background (low-rank) and moving foreground (sparse).

K ロ K K 御 K K 重 K K

 $2Q$

Low-rank $+$ Sparse II: Faces

A set of face images of the same person under different lightings can be modeled as a low-dimensional, $3 \sim 9$ d, subspace and sparse occlusions and corruptions (specularities).

Low-rank $+$ Sparse III: **Communities**

Finding communities in a large social networks. Each community can be modeled as a clique of the social graph G , hence a rank-1 block in the connectivity matrix M . Hence M is a low-rank matrix and some sparse connections across communities.

(ロ) (個) (星) (星)

Low-rank $+$ Sparse: Convex Relaxations

Optimization formulation:

minimize rank $(L) + \lambda ||S||_0$ subject to $L + S = Y$,

which is intractable. Consider convex relaxation:

$$
\|\boldsymbol{S}\|_0 \to \|\boldsymbol{S}\|_1, \qquad \text{rank}(\boldsymbol{L}) = \|\boldsymbol{\sigma}(\boldsymbol{L})\|_0 \to \|\boldsymbol{L}\|_*
$$

minimize $||L||_* + \lambda ||S||_1$ subject to $L + S = Y$.

- Theory: recovery, e.g., when L_o incoherent, S_o random sparse.
- Efficient, scalable methods: see Lecture 2 and course resources.

General Low-Dimensional Models Atomic Norms and Structured Sparsity

Atomic Norm: for a set of atoms \mathcal{D} , $\|\pmb{x}\|_{\diamondsuit} = \inf\{\sum_i c_i \mid \sum_i c_i \pmb{d}_i = \pmb{x}\}$

- Sparsity: $\mathcal{D} = \{e_i\},\$
- Low-rank: $\mathcal{D} = \{uv^T\}$,
- \bullet Column sparse matrices: $\mathcal{D} = \{\boldsymbol{u}\boldsymbol{e}_j^T\},$
- Sinusoids: $\mathcal{D} = {\exp(i(2\pi ft + \xi))},$
- Tensors: $\mathcal{D} = {\boldsymbol{u}_1 \otimes \boldsymbol{u}_2 \otimes \boldsymbol{u}_N}$, ...

Structured Sparsity: capture relationship between nonzeros

キロメ メ御メ メミメ メミメ

重

 $2Q$

Learned Low-Dimensional Models: Dictionary Learning, Deconvolution

min $f(\mathbf{A}, \mathbf{X}) \doteq \frac{1}{2}$ $\frac{1}{2} \|\boldsymbol{Y}-\boldsymbol{A}\boldsymbol{X}\|_F^2 + \lambda \|\boldsymbol{X}\|_1$, s.t. $\boldsymbol{A}\in O_n$

The same **modeling toolkit**, but optimization formulations become nonconvex! (see Lecture 4)

Nonlinear Low-Dimensional Models

Nonlinear Observations: Transformed low-rank texture

(a) Low-rank texture I_o

(b) Its image I under a different viewpoint

Nonlinear (Manifold) Structure: Gravitational wave astronomy

Nonconvex optimization + deep networks as tools for Linearizing Nonlinear Low-d Structure! (see Lectures 3,5-7)

Conclusion and Coming Attractions

- **Models**: Sparse and Low-rank provide a flexible toolkit for modeling high-dimensional signals
- Sample Complexity: Structured signals can be recovered from near-minimal measurements $m \sim #dof(\boldsymbol{x})$.
- Tractable Computation: Convex relaxations ℓ^1 , nuclear norm
- Extensions: Combinations, learned dictionaries, nonlinear structures.

Next lecture: low-dimensionality meets deep networks [Atlas Wang].

Thank You! Questions?

K ロ ▶ K 레 ▶ | K 회 ▶ | K 환 ▶ │ 환 │ ⊙ Q Q ⊙