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The Signal Processing Pipeline

Sensing, Compression

Denoising, Deblurring, Superresolution

Source Separation, Error Correction

Inference, Prediction

The pursuit of low-dimensional structure is a universal task!



Historical Context: Quest for Low-Dimensionality

Fourier

Wavelets

X-lets: Curvelets, Contourlets, Bandelets, ...

Learned Dictionaries

Learned Reconstruction Procedures

A continuing quest for sparse signal representations
leveraging mathematics + massive data and computation!



Historical Context: Sparsity in Neuroscience

Dogma for natural vision [Barlow 1972]: “... to represent the input as
completely as possible by activity in as few neurons as possible.”

Find sparse {xi} such that

y =

n∑

i=1

xiai + ϵ ∈ Rm, (1)

[Nature, Olshausen and Field 1996.]



Historical Context: Sparse and Low-d in Statistics

Principal Component Analysis
Linear correlations in data (low-rank model!)

[Pearson 1901], [Hotelling 1933], [Eckart and Young 1936]

Best Subset Selection
Select a few relevant predictors (sparse model!)

[Hocking, Leslie, and Beale 1967], Stagewise pursuit [Efroymson 1966],

Lasso [Tibshirani 1996], Basis pursuit [Chen, Donoho, and Saunders 1998]



Historical Context: Estimation, Errors, Missing Data



The Modern Era: Massive Data and Computation



Motivating Issues I: Correctness?

How can we correctly compute with low-dimensional structure?

Sparse Vectors Low-rank Matrices Nonlinear Manifolds

Low-d. structure leads to principled answers and practical methods!



Motivating Issues II: Computational Efficiency?

Computational Tractability: easy vs./ hard problems:

Convexity Benign Nonconvexity

Efficient, scalable methods leveraging problem geometry:



Motivating Issues III: Resource Efficiency?

Data Efficiency: How many samples? How many labels?
Architecture Efficiency: How deep? How wide? What operations?

Low-d. structure of data sets fundamental resource requirements
for sensing and learning.



Motivating Issues IV – Robustness?

Robustness: to errors, outliers, missing data:

Robustness and deep networks?

From [Goodfellow, Shlens and Szegedy, 2015]

Low-d structure of signal and error can lead to principled ap-
proaches to robustness.



Motivating Issues V: Invariance?

Transformations of the signal domain:

can cause still lead to disturbing failures:

From [Azulay and Weiss, 2019]

Low-d. structure in texture / appearance and transformation!



This Course: The Plan

• Lecture 1: Introduction to Low-D Models

• Lecture 2 (today): Low-D in Neural Networks: Practice and Theory

• Lecture 3 (6/7): Designing Deep Networks for Low-D Structure

• Lecture 4 (6/7): Nonconvex Optimization for Low-D Structure

• Lecture 5-7 (6/8-9): Learning Deep Networks for Low-D Structure



This Tutorial: Resources

High-Dimensional Data Analysis
with Low-Dimensional Models

Principles, Computation, and Applications

John Wright and Yi Ma
Cambridge University Press, 2022.

Preproduction Copy from Website: https://book-wright-ma.github.io
Slides, Code, etc: https://book-wright-ma.github.io/Lecture-Slides/

Tutorial Website: tutorial slides, code, etc.:
https://highdimdata-lowdimmodels-tutorial.github.io

https://book-wright-ma.github.io
https://book-wright-ma.github.io/Lecture-Slides/
https://highdimdata-lowdimmodels-tutorial.github.io


Sparse Signal Models

Sparse Signals: Call xo ∈ Rn sparse if it has only a few nonzero entries:

Sparse Recovery: Given linear measurements y ∈ Rm of a sparse signal
xo:

y
observation

= A
measurement matrix

xo
unknown

recover xo.



Sparsity I: Neural Spikes

y
observation

= a
firing pattern

∗ x
sparse spike train

+ z
noise

.

Sparse and low-dimensional models arise naturally from physical
structure of data!



Sparsity I: Neural Spikes and Beyond

Common Convolutional Model: y = a ∗ x+ z, with x sparse.



Sparsity II: Faces and Error Correction

y
observation

= yo
clean data

+ e
sparse error

∈ Rm.

Two types of structure: sparsity of identity and sparsity of errors.

Concatenate gallery images of n subjects into a large “dictionary”:

B = [B1 | B2 | · · · | Bn]
all training images

∈ Rm×n
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Sparsity II: Faces and Error Correction

Find sparse solutions (x, e) to the linear system:

y = Bx+ e = [B, I] [ xe ] .

Correcting Gross Errors is also a sparse recovery problem!



Sparsity III: Magnetic Resonance Imaging

Figure: Left: Key components. Right: The three-axis gradient coils.



Sparsity III: Magnetic Resonance Imaging

Simplified mathematical model for MRI:

y = F [I](u) =

∫

v
I(v) exp(−i 2πu∗v) dv, u,v ∈ R2

y =




y1
...
ym


 =




F [I](u1)
...

F [I](um)


 .
= FU[I], m ≪ N2.

Figure: Recovering MRI image from Fourier measurements.



Sparsity III: Structure of MR Images

Express I as a superposition of basis functions Ψ = {ψ1, . . . ,ψN2}:

I
image

=

N2∑

i=1

ψi
i-th basis signal

× xi.
i-th coefficient

Many natural signals become sparse or compressible in an appro-
priately designed transform domain!



Sparsity III: Image Reconstruction by Sparse Recovery

y
observed Fourier coefficients

= FU[I],

= FU

[
ψ1x1 + · · · +ψN2xN2

]
,

= FU[ψ1]x1 + · · · + FU[ψN2 ]xN2 ,

=
[
FU[ψ1] | · · · | FU[ψN2 ]

]

matrix A ∈ Rm×N2
, m ≪ N2.

x,

= Ax. (2)

x is sparse or approximately sparse!

Compressed sensing: the number of measurements m for accurate
reconstruction should be dictated by signal complexity



Sparsity IV: Image Patches

Denoising given Inoisy = Iclean + z ... break into patches y1, . . . , yp:

yi = yiclean + zi = A
patch dictionary

× xi
sparse coefficient vector

+ zi.

Figure: Left: noisy input; middle: denoised; right: learned patch dictionary.

Natural signals are challenging to model analytically =⇒ can learn
the sparse model from data!

Figure: [Mairal, Elad, Sapiro ’08]



Measuring Sparsity: ℓ0 Norm

Def: the ℓ0 “norm” ∥x∥0 is the number of nonzero entries in the
vector x: ∥x∥0 = #{i | x(i) ̸= 0}.

Connection to ℓp norms

∥x∥p =
(∑

i |xi|p
)1/p

:

∥x∥0 = limp↘ ∥x∥pp.
The ℓp balls.



Sparse Recovery: ℓ0 minimization

Computational Principle: seek the sparsest signal consistent with
our observations:

x̂ = argmin ∥x∥0 s.t. Ax = y.

Brute force exhaustive search: try all possible sets of nonzero entries

AIxI = y? ∀I ⊆ {1, . . . , n}, |I| ≤ k.

Theory: ℓ0 recovers any sufficiently sparse
signal! For generic A, success when
∥xo∥0 ≤ m

2 .
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ℓ0 Minimization is NP-hard

Theorem (Hardness of ℓ0 Minimization)

The ℓ0-minimization problem min ∥x∥0 s.t. Ax = y is (strongly) NP-hard.

Proof: Reducible from Exact 3-Set Cover (E3C) problem.
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In high dimensions, need to pay attention to both statistical and
computational efficiency!
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Convex Relaxation: ℓ1 Minimization

Intuitive reasons why ℓ0 minimization:

min ∥x∥0 subject to Ax = y. (3)

is very challenging:

ℓ0 is nonconvex, discontinuous, not amenable to local search
methods such as gradient descent.



Convex Relaxation: ℓ1 Minimization

For minimizing a generic function: min f(x),x ∈ C (a convex set), local
methods: xk+1 = xk − t∇f(xk) succeed only if f has “nice” geometry:

Need to formulate for computational efficiency!

• Lectures 1: convex relaxations for sparse, low-rank models

• Lectures 2+: benign nonconvex formulations for nonlinear
models



Convex Relaxation: ℓ1 Minimization

∥x∥1

Largest convex
lower bound

Convex functions
lower bounding ∥x∥0

x

∥x∥0

Figure: Convex surrogates for the ℓ0 norm. ∥x∥1 is the convex envelope of
∥x∥0 on B∞.

Efficient convex relaxation:

min ∥x∥1 subject to Ax = y.

Solvable quickly at large scale using dedicated methods (Lecture 2).



Minimizing the ℓ1 Norm: Simulations

Solve: min ∥x∥1 s.t. Ax = y. (4)

A is of size 200× 400. Fraction of success across 50 trials.

Experiment: ℓ1 minimization recovers any sufficiently sparse signal?



Geometric Intuition: Coefficient Space

Given y = Axo ∈ Rm with xo ∈ Rn sparse:

min ∥x∥1 subject to Ax = y. (5)

The space of all feasible solutions is an affine subspace:

S = {x | Ax = y} = {xo}+ null(A) ⊂ Rn. (6)



Geometric Intuition: Coefficient Space

Gradually expand a ℓ1 ball of radius t from the origin 0:

t · B1 = {x | ∥x∥1 ≤ t} ⊂ Rn, (7)

till its boundary first touches the feasible set S:



Geometric Intuition: ℓ1 vs. ℓ2?

A : min ∥x∥1 subject to Ax = y. (8)

B : min ∥x∥2 subject to Ax = y (9)

ℓ1 picks out sparse signals, because the ℓ1 ball is pointy!



Theory: Isometry Principles

Say that A satisfies the restricted
isometry property of order k
with coefficient δ if for all k-sparse x,

(1− δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22.

Theorem (RIP =⇒ ℓ1 succeeds)

Suppose that δ2k(A) <
√
2− 1. Then ℓ1 minimization recovers any

k-sparse signal x!



Theory: Random Sensing

Theorem (RIP of Gaussian Matrices)

If A ∈ Rm×n with entries independent N
(
0, 1

m

)
random variables, with

high probability, δk(A) < δ, provided m ≥ Ck log(n/k)/δ2.

=⇒ ℓ1-minimization recovers k-sparse vectors from about
k log(n/k) measurements (nearly minimal)!

Extensions: other distributions, structured random matrices.



From Sparse Recovery to Low-Rank Recovery

Recovering a sparse signal xo:

y
observation

= A xo
unknown

where A ∈ Rm×n is a linear map.

Recovering a low-rank matrix Xo:

y
observation

= A
[
Xo

unknown

]

where A : Rn1×n2 → Rm is a linear map.



Low-Rank I: Rank and Geometry

Multiple images of a Lambertian object with varying light:

Y = PΩ[NL], X =NL has rank 3.

Low-rank model from physical constraints (3 degrees of freedom
in point illumination)

See also: multiview geometry, system identification, sensor positioning...



Low-Rank II: Rank and Collaborative Filtering

We observe:

Y
Observed ratings

= PΩ

[
X

Complete ratings

]
,

where Ω
.
=

{
(i, j) | user i has rated product j

}
.

Low-rank model: user preferences are linearly correlated; a few
factors predict preferences (Yij = u

T
i vj , with ui,vj ∈ Rr).

See also: latent semantic analysis, topic modeling...



Rank and Singular Value Decomposition

Theorem (Compact SVD)

Let X ∈ Rn1×n2 be a matrix, and r = rank(X). Then there exist
Σ = diag(σ1, . . . , σr) with numbers σ1 ≥ σ2 ≥ · · · ≥ σr > 0 and matrices
U ∈ Rn1×r, V ∈ Rn2×r, such that U∗U = I, V ∗V = I and

X = UΣV ∗ =

r∑

i=1

σiuiv
∗
i .

Low-rank is sparsity of the singular values: rank(X) = ∥σ(X)∥0!

Many of the same tools and ideas apply!

Computing SVD: Nice Nonconvex Problem (Lecture 3)



Affine Rank Minimization

Problem: recover a low-rank matrix Xo from linear measurements:

min rank(X) subject to A[X] = y

where y ∈ Rm is an observation and A : Rn1×n2 → Rm is linear.

General linear map: A[X] = (⟨A1,X⟩, . . . , ⟨Am,X⟩), Ai ∈ Rn1×n2 .

NP-Hard in general, by reduction from ℓ0 minimization, using that

rank(X) = ∥σ(X)∥0 .

Let’s seek a tractable surrogate...



Convex Relaxation: Nuclear Norm Minimization

Replace the rank, which is the ℓ0 norm σ(X) with the ℓ1 norm of σ(X):

Nuclear norm: ∥X∥∗ .
= ∥σ(X)∥1 =

∑

i

σi(X).

Also known as the trace norm, Schatten 1-norm, and Ky-Fan k-norm.

Nuclear norm minimization problem:

min ∥X∥∗ subject to A[X] = y.

Geometry of nuclear norm minimization:

Nuclear norm ball B∗ = {X | ∥X∥∗ ≤ 1}



Low-Rank Recovery with Generic Measurements

• Rank Restricted Isometry Property: for all rank-r X,

(1− δ)∥X∥F ≤ ∥A[X]∥ ≤ (1 + δ)∥X∥F

• Rank RIP =⇒ accurate recovery: if δ4r(A) ≤
√
2− 1, nuclear

norm minimziation recovers any rank-r Xo.

• Random linear maps have rank-RIP if

A[X] = (⟨A1,X⟩, . . . , ⟨Am,X⟩)

with A1, . . . ,Am independent Gaussian matrices, A has rank-RIP
with high probability when m ≥ C(n1 + n2)r/δ

2.

Nuclear norm minimization recovers low-rank matrices from near
minimal number m ∼ r(n1 + n2 − r) of generic measurements.



Generic vs. Structured Measurements

yi =

〈
,Xo

〉

Matrix Sensing

yi =

〈
,Xo

〉

Ai random Ai = Eui,vi

Matrix Completion

Rank-RIP: no low-rank X in null(A).

Matrix completion: ∃ rank-1 X in null(A). E.g., X = Eij , (i, j) /∈ Ω.

=⇒ Matrix completion does not have restricted isometry property!

Analogous instances: superresolution of point sources, sparse spike
deconvolution, analysis of dictionary learning methods.



Theory for Matrix Completion

Theorem

With high probability, nuclear norm minimization recovers an n× n,
ν-incoherent, rank-r matrix from a random subset of entries, of size

m ≥ Cnrν log2 n.

Restrict to incoherent Xo

(not concentrated on a few entries!)

Proof ideas: local isometry plus clever
use of convexity and probability.

(primal) minimizeX hC, Xi
s.t. hAi, Xi = bi, 1  i  m

X ⌫ 0

m

(dual) maximizey b>y

s.t.
mX

i=1
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S ⌫ 0
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Parallelism between Rank and Sparsity

Sparse Vector Low-rank Matrix

Low-dimensionality of individual signal x a set of signals X

Compressive sensing y = Ax Y = A(X)

Low-dim measure ℓ0 norm ∥x∥0 rank(X)

Convex surrogate ℓ1 norm ∥x∥1 nuclear norm ∥X∥∗
Success conditions (RIP) δ2k(A) ≥

√
2− 1 δ4r(A) ≥

√
2− 1

Random measurements m = O
(
k log(n/k)

)
m = O(nr)

Stable/Inexact recovery y = Ax+ z Y = A(X) +Z

Phase transition at Stat. dim. of descent cone: m∗ = δ(D)



Sharp Phase Transitions with Gaussian Measurements

High dimensions (large n): sharp line between success and failure!

Beautiful math: convex polytopes, conic geometry, high-D probability.



Noise and Inexact Structure

Observation: y = Axo + z, with xo structured, and z noise.

Goal: produce x̂ as close to xo as possible! Relax:

• Lasso for stable sparse recovery

min
x

1
2∥Ax− y∥22 + µ∥x∥1

• Matrix Lasso for stable low-rank recovery

min
X

1
2∥A[X]− y∥22 + µ∥X∥∗.

Wealth of statistical results: if A “nice” (say, RIP or RSC) ...

(i) Deterministic noise: ∥x̂− xo∥ ≤ C∥z∥2
(ii) Stochastic noise: ∥x̂− xo∥ ≤ Cσ

√
k log n/m.

(iii) Inexact structure: ∥x̂− xo∥ ≤ C∥xo − [xo]k∥.
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Combining Rank and Sparsity: Robust PCA?

Observation Y Low-rank Matrix Lo Sparse Error So

Given Y = Lo +So, with Lo low-rank, So sparse, recover (Lo,So).

A robust counterpart to classical principal component analysis:

Classical PCA: Low-rank + small noise
Matrix Completion: Low-rank from a subset of entries
Low-rank and Sparse: Low-rank + gross errors



Low-rank + Sparse I: Video

A sequence of video frames can be modeled as a static background
(low-rank) and moving foreground (sparse).



Low-rank + Sparse II: Faces
A set of face images of the same person under different lightings can be
modeled as a low-dimensional, 3 ∼ 9d, subspace and sparse occlusions and
corruptions (specularities).



Low-rank + Sparse III: Communities

Finding communities in a large social networks. Each community can be
modeled as a clique of the social graph G, hence a rank-1 block in the
connectivity matrix M . Hence M is a low-rank matrix and some sparse
connections across communities.



Low-rank + Sparse: Convex Relaxations

Optimization formulation:

minimize rank(L) + λ∥S∥0 subject to L+ S = Y ,

which is intractable. Consider convex relaxation:

∥S∥0 → ∥S∥1, rank(L) = ∥σ(L)∥0 → ∥L∥∗

minimize ∥L∥∗ + λ∥S∥1 subject to L+ S = Y .

• Theory: recovery, e.g., when Lo incoherent, So random sparse.

• Efficient, scalable methods: see Lecture 2 and course resources.



General Low-Dimensional Models
Atomic Norms and Structured Sparsity

Atomic Norm: for a set of atoms D, ∥x∥♢ = inf{∑i ci |
∑

i cidi = x}
• Sparsity: D = {ei},
• Low-rank: D = {uvT },
• Column sparse matrices: D = {ueTj },
• Sinusoids: D = {exp(i(2πft+ ξ))},
• Tensors: D = {u1 ⊗ u2 ⊗ uN}, . . .

Structured Sparsity: capture relationship between nonzeros



Learned Low-Dimensional Models:
Dictionary Learning, Deconvolution

Data Y

[ ]

Dictionary A

min f (A,X)
.
= 1
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The same modeling toolkit, but optimization formulations become
nonconvex! (see Lecture 4)



Nonlinear Low-Dimensional Models
Nonlinear Observations: Transformed low-rank texture

Nonlinear (Manifold) Structure: Gravitational wave astronomy
Gravitational waves

Video: LIGO Lab Caltech : MIT (https://www.youtube.com/watch?v=1agm33iEAuo) 2

Nonconvex optimization + deep networks as tools for Lineariz-
ing Nonlinear Low-d Structure! (see Lectures 3,5-7)



Conclusion and Coming Attractions

• Models: Sparse and Low-rank provide a flexible toolkit for modeling
high-dimensional signals

• Sample Complexity: Structured signals can be recovered from
near-minimal measurements m ∼ #dof(x).

• Tractable Computation: Convex relaxations ℓ1, nuclear norm

• Extensions: Combinations, learned dictionaries, nonlinear structures.

Next lecture: low-dimensionality meets deep networks [Atlas
Wang].

Thank You! Questions?
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